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Abstract. In classical percolation theory, the van den Berg-Kesten (BK) inequality is a fundamental
tool that shows that disjoint events induce negative conditionings on each other. The inequality
also holds in the context of last passage percolation (LPP), which is the zero temperature limit of
polymer models and an important subclass in the Kardar-Parisi-Zhang (KPZ) universality class.
Recently, an analog of the BK inequality was discovered in the context of zero temperature line
ensembles and the scaling limit of LPP, where it was used to study upper tail probabilities of the
weight and the scaling limit of geodesics under such upper tail conditionings. However, while it has
become apparent that such an inequality in the positive temperature setting would have a number
of applications, it seems likely that a direct generalization of the zero temperature inequality would
not hold. In this work we prove a version of the BK inequality for the KPZ line ensemble and the
continuum directed random polymer. We do so by working with the log gamma polymer, making
use of its integrability and the geometric RSK correspondence. Our inequality serves as a key input
in analyzing the KPZ line ensemble and proving sharp upper tail estimates of the KPZ equation in
[GH22], and proving convergence of the continuum directed random polymer to Brownian bridge
under the upper tail event in [GHZ23]. The crucial role of integrability in the validity of such an
inequality is highlighted via a counter-example for a non-integrable model.
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1. Introduction and main results

1.1. Background on the zero temperature BK inequality. The van den Berg-Kesten (BK)
[VDBK85, Rei00] inequality is a well-known and important tool in classical Bernoulli percolation
on Zd. It says that the probability of two events occurring “disjointly” (i.e., their occurrence can
be verified by inspecting the values of the i.i.d. random variables associated to disjoint subsets of
the graph) is upper bounded by the product of the individual events’ probabilities, i.e., they are
negatively correlated.

While in its original form it was stated in the case that the random variables are Bernoulli-
distributed, it also extends to the case of general distributions on R [AGH18]. This has made it
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a useful tool also in the study of last passage percolation (in which one considers the maximum
energies of directed paths passing through an i.i.d. random field, where the energy of a path is
the sum of the variables it passes through) on Z2 [BGHH22, BHS22, BBF23, Sch23, ABGS25], an
important subclass of models in the Kardar-Parisi-Zhang universality (KPZ) class.

Another important tool in the study of the KPZ universality class are line ensembles, or collections
of random interacting functions admitting a local Gibbs property. Two central examples are the
parabolic Airy line ensemble [CH14] and the KPZ line ensemble [CH16]. The parabolic Airy line
ensemble is a zero temperature object associated to a limiting LPP model known as the directed
landscape, while the KPZ line ensemble is a positive temperature object associated to a limiting
polymer model known as the continuum directed random polymer (CDRP). Both line ensembles
have curves indexed by N, where the k lowest indexed curves together encode information about
the energy of k disjoint paths for every k.

This connection to disjoint paths suggests that the above line ensembles should enjoy a version
of the BK inequality. This was proven for the case of the parabolic Airy line ensemble [GH22]
(though its proof operates at the level of the line ensemble directly). The setting of the KPZ line
ensemble is significantly more subtle, as will become apparent shortly, and proving a version of the
BK inequality in that setting is the goal of this paper.

Let us briefly state the inequality proved for the parabolic Airy line ensemble (P1, P2, . . .) in
[GH22]. Let a < b, C([a, b],R) be the space of real-valued continuous functions on [a, b], and A be
an increasing Borel measurable subset of C([a, b],R), where increasing means that if f ∈ A and
g ∈ C([a, b],R) satisfies g ≥ f pointwise, then g ∈ A. The version of the BK inequality from [GH22]
says that, almost surely,

P
(
P2(·)|[a,b] ∈ A

∣∣∣ P1
)

≤ P
(
P1(·)|[a,b] ∈ A

)
; (1.1)

in words, conditioned on the first curve, the second curve is stochastically dominated by an
unconditioned copy of the first curve. This inequality was used in [GH22] to derive sharp estimates
on upper tail probabilities of the first curve (in fact, this argument was given for a general class of
line ensembles satisfying certain assumptions, including a much weakened form of (1.1)).

Remark 1.1. We point out that, while the classical BK inequality suggests an inequality of the
type of (1.1) for the parabolic Airy line ensemble, it does not imply it. This is due to the fact that
generic events of P2 and P1 encode energies of collections of two disjoint paths as a whole, and not
of each path individually. However, certain special events can be related to events of the energies of
the individual paths, for which, indeed, (1.1) is implied by the classical BK inequality.

1.2. The BK inequality in positive temperature. Given its great utility in LPP and other
zero temperature contexts, it is of interest to obtain a generalization of the BK inequality in positive
temperature settings, such as polymer models and their associated line ensembles. The curves of the
positive temperature analog of P, the KPZ line ensemble, which we will denote ht = (ht,1, ht,2, . . .),
are associated to the free energy of polymers or collections of disjoint polymers in a continuum
polymer model. Here, informally, the free energy is the logarithm of the partition function, which
is the integral over all directed paths of the exponential of the path’s energy. Note the contrast
with LPP, where one considers the single path with the maximum energy. Our goal is to obtain an
inequality like (1.1) with ht in place of P.

The distinction just noted already poses a conceptual obstacle to obtaining a form of the BK
inequality in the positive temperature context. Indeed, the weights of paths in LPP models are
determined by just the portion of the environment they pass through, which works well with
providing disjoint “certificates” of events occurring as needed in the classical BK inequality. The
free energy in a polymer model, however, necessarily involves all the randomness in the environment,
and so, for instance, while the largeness of P2 can be tied to the existence of two disjoint paths of
large energies, such a simple disjoint certificate is not available for the largeness of ht,2. Thus no
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naive or immediate generalization of the BK inequality from LPP is possible. This issue can be
understood as fundamentally arising from entropy.

Nevertheless, in this work we prove a form of the BK inequality for the free energy of the CDRP
and the KPZ line ensemble. In the next section we introduce our main objects more precisely and
in Section 1.4 we state our main results.

Remark 1.2. As we will see, the inequality we prove for the KPZ line ensemble differs slightly
from (1.1), due to the complications arising from the entropy phenomenon in positive temperature.
We will expand more on this point after the statements of the results are given.

1.3. Continuum directed random polymer & KPZ line ensemble. In this section we define
the CDRP’s disjoint polymer partition functions and the KPZ line ensemble. We will not need the
polymer measure for the CDRP. For all of these objects, we take the inverse temperature β = 1
throughout this paper for simplicity of notation, while our arguments go through verbatim for any
fixed β.

1.3.1. The CDRP partition function, multiplicative stochastic heat equation, and its multi-line
extension. Let ξ be a space-time white noise, and define R4

↑ := {(x, s; y, t) ∈ R4 : s < t}. For
(x, s; y, t) ∈ R4

↑, let (x, s; y, t) 7→ Z(x, s; y, t) be the (mild) solution to the multiplicative stochastic
heat equation (SHE) defined by requiring, for all x, s ∈ R,{

∂tZ(x, s; y, t) = 1
4∂2

yZ(x, s; y, t) + Z(x, s; y, t)ξ(y, t) s < t

Z(x, s; ·, s) = δx,
(1.2)

where the same space-time white noise ξ is used for all choices of initial coordinates (x, s), and δx is
the delta mass at x. The initial condition is understood in the weak sense, i.e., with probability one
limt→s

∫
f(y)Z(x, s; y, t)dy = f(x) for all smooth functions f of compact support.

This random field was constructed in [AKQ14a, Theorem 3.1] and is a continuous process. (More
precisely, the field constructed in [AKQ14a] satisfies (1.2) with coefficient 1

2 in place of 1
4 , but this is

related to our solution by a simple scaling by constants; we adopt this variant of the SHE in order
to obtain more convenient coefficients later and match other parts of the literature.)

We will also need the multi-line extension originally introduced in [OW16]. First denote

pt(x) = 1√
πt

exp(−x2/t)

and, for any m ∈ N and s < t, let

Λm =
{

(t1, . . . , tm) ∈ Rm : t1 ≤ . . . ≤ tm

}
and

Λm([s, t]) =
{

(t1, . . . , tm) ∈ Rm : s ≤ t1 ≤ . . . ≤ tm ≤ t
}

.
(1.3)

For any s < t, x, y ∈ R, and k ∈ Z+, we let Zk(x, s; y, t) be defined by

Zk(x, s; y, t) := pt−s(y − x)k

(
1 +

∞∑
m=1

∫
Λm([s,t])

∫
Rm

R((x1, t1), . . . , (xm, tm))
m∏

i=1
W (dxi, dti)

)
,

(1.4)

where R denotes the m-point correlation function for a collection of k non-intersecting rate two
Brownian bridges which all start at x at time s and end at y at time t. This generalizes the definition
(1.2) of Z above; in particular, Z1 = Z. Further, Zk(x, s; y, t) can be thought of as the partition
function for k disjoint paths in the CDRP all starting at the common point (x, s) and ending at the
common point (y, t).
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In [OW16] the definition (1.4) is given for any fixed k and x, s, y, t and the L2(W ) convergence
of the chaos expansion is proved. In [Nic21, Corollary 1.9, 1.11], it is shown that

(y, k) 7→ log Zk(0, 0; y, t)
Zk−1(0, 0; y, t)

is a (scaled) KPZt line ensemble, as defined in [CH16, Theorem 2.15] (up to certain scalings by
constant coefficients); therefore Zk(x, s; y, t) has a version which is continuous in y, for any fixed k
and x, s, t. In [LW20, Theorem 1.1], it is further shown that (x, y, t) 7→ Zk(x, s; y, t) can be defined
as a continuous function, for any fixed k and s. Recall also that Z can be defined as a four-parameter
random continuous function. It is also shift, shear, and reflection invariant (in distribution) (see
Lemma 3.1).
Scaling. Under certain limiting transitions (either t → ∞ or β → ∞) and after appropriate
centering and scaling (see (1.6) and (1.7)), the logarithm of Z, which can be understood as a
solution to the KPZ equation, converges to the directed landscape [AH23, Wu23b]. While we do
not actually use this convergence in this paper, it is for this reason that we adopt our choice of
scaling coefficients as mentioned above.1

1.3.2. Multi-point partition function with distinct endpoints. For any x = (x1, · · · , xn), y = (y1, · · · , yn) ∈
Λn, and s < t, we define

Kn(x, s; y, t) := det[Z(xi, s; yj , t)]ni,j=1. (1.5)
Then from the continuity of Z = Z1, we have that Kn(x, s; y, t) is almost surely continuous in all
the variables.

Kn(x, s; y, t) should be understood as the partition function of n disjoint paths, one each from
(xi, s) to (yi, t) for i = 1, . . . , n, where the starting points are distinct (as otherwise the determinant
above is zero, reflecting that the entropy of disjoint paths with common endpoints is zero). From
this perspective (1.5) can be understood as a form of the Lindström-Gessel-Viennot lemma (see
Lemma 2.7 ahead) in the continuum. To go from Kn to Zn (i.e., the case of common starting and
ending points), one must first normalize Kn by a factor that matches the entropy contribution
and then take a limit of the distinct points. This normalization factor is explicit and given by the
product of the Vandermonde determinants of x and y (see (3.1) ahead).

1.3.3. KPZ line ensemble. An important tool in the study of the KPZ equation and the free energy
of the CDRP is the KPZt line ensemble from [CH16] and its associated Gibbs property. To be
concise, at this stage we simply state some relevant facts connecting these objects, with references
given in Section 3.

For any t > 0 and x ∈ R, we denote

ht,1(x) := log Z(0, 0; x, t) + t

12 , ht,2(x) := log Z2(0, 0; x, t)
Z(0, 0; x, t) + t

12 . (1.6)

We note that H(x, t) := ht,1(x) solves the KPZ equation
∂tH = 1

4∂2
xH + 1

4(∂xH)2 + Ẇ

in a formal sense, i.e., Z(x, t) = exp(H(x, t)) solves the multiplicative SHE (1.2).
Thanks to the scaling in defining Z, ht,1 has the parabolic decay of −x2/t. More precisely,

x 7→ hβ
t,1(x) + x2/t is stationary (which can be deduced from the shear invariance of Z, Lemma 3.1).

We also denote
ĥt,1(x) := t−1/3ht,1(t2/3x), ĥt,2(x) := t−1/3ht,2(t2/3x). (1.7)

1Consider Z̃, the solution to the usual multiplicative SHE ∂tZ̃ = 1
2 ∂yyZ̃ + Z̃ξ, and the processes Z̃k as defined

in [OW16, eq. (9)]. Then it holds that Zk(x, s; y, t) = 2kZ̃k(2x, 2s; 2y, 2t), where the 2k factor can be thought of as
ensuring the initial condition, Z(x, s; ·, t) → δx as t → s in the weak sense, holds.
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As a result of this scaling, ĥt,1 and ĥt,2 have the parabolic decay of −x2 independent of t. This is
also the scaling under which the t → ∞ limit is the parabolic Airy line ensemble.

1.4. Main results. For any a < b, a Borel measurable subset A ⊆ C([a, b,R]) is called increasing, if
for any f ∈ A and g ∈ C([a, b,R]) such that g ≥ f pointwise, g ∈ A holds. For a function f and real
number λ, we define f − λ to be the function x 7→ f(x) − λ. Our first main result is the following
inequality.

Theorem 1.3. There exist C, c, L0 > 0 such that the following holds. Let y ∈ R, K ≥ 0, and
A ⊆ C([0, K],R) be an increasing Borel measurable set. For any t > 0, L ≥ L0(t−1/6 ∨ 1), and
M > C(L + y2)3/4,

P
(
ĥt,2|[y,y+K] − Ct−1/3 log M ∈ A

∣∣∣ ĥt,1(y) = L
)

≤ P
(
ĥt,1|[y,y+K] ∈ A

)
+ 3(K + 1)t2/3 exp(−cM2).

The same also holds when the conditioning is replaced by ĥt,1(y) ≥ L. The same also holds under
both conditionings when the processes are considered on [y − K, y] rather than [y, y + K].

In words, (1.1) holds for the KPZ line ensemble as well if we condition on the first curve on a
single point y and consider the second curve on either side of y, up to a logarithmic shift of the
second curve and an error of exp(−cL2). The C log M term (which depends on L through the lower
bound on M) can be understood as a quantitative instantiation of the role of entropy mentioned
above in Section 1.2, as can be seen in the proof. While we do expect some sort of a shift to be
needed for a form of the BK inequality to hold for the KPZ line ensemble, we do not know whether
a logarithmic shift is the true behavior. One also obtains a version of the BK inequality for the Airy
line ensemble (i.e., zero temperature) by taking, e.g., M = Lt and taking t → ∞; see Remark 4.5.
The lower bounds on L and M are not strictly necessary, but are assumed to obtain a cleaner form
of the error bound.

Theorem 1.3 is actually a fairly immediate consequence of a slightly more technical result which
we state next and which will be proven in Section 4. In the following, for two real-valued functions
f , g defined on a common domain D, we write f ≥ g as shorthand for f(x) ≥ g(x) for all x ∈ D.
For f defined on D and D′ ⊆ D, f |D′ denotes the restriction of f to D′. Finally, a.e. f ∈ C(I,R)
for an interval I means all functions f in a probability 1 set with respect to the law of Brownian
motion on I with a normally distributed starting point.

Theorem 1.4. There exist C, c > 0 such that the following holds. Let y ∈ R, K, R ≥ 0, and
A ⊆ C([0, K],R) be an increasing Borel measurable set. For any t > 0, M > 0, and a.e. f ∈
C([y − R, y],R),

P
(
ĥt,2|[y,y+K] − Ct−1/3 log M ∈ A

∣∣∣ ĥt,1|[y−R,y] = f
)

≤ P
(
ĥt,1|[y,y+K] ∈ A

)
+ 3(K + 1)t2/3 exp(−cM2)

P(ĥt,1|[y−R,y] ≥ f)
.

(1.8)

The same also holds when the conditioning is replaced by ĥt,1|[y−R,y] ≥ f , in which case we may relax
the continuity assumption and allow any f : [y − R, y] → R ∪ {−∞} which is upper semicontinuous.

All of the previous also hold under both conditionings when +K is replaced by −K and −R by
+R simultaneously.

Observe that the error term looks different in Theorems 1.3 and 1.4, in that the latter’s has
a denominator which is a probability. In fact, one of the steps in going from Theorem 1.4 to
Theorem 1.3 is lower bounding that probability and absorbing it into the exp(−cM2) term in the
numerator; this is the reason we impose a lower bound of order L3/4 on M in Theorem 1.3 (in this
setting the probability in the denominator is like exp(−cL3/2)).
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We also point out that the interval on which the values of ĥt,1 are conditioned on and the interval
on which the event of ĥt,2 is considered are disjoint, unlike (1.1) which had no such constraint. The
proofs of these positive temperature results goes through the discrete log-gamma polymer model,
and the above constraints arise due to the use of certain Markovian structures in the latter.

Theorem 1.4 is actually proved as a consequence of the following slightly cleaner result, which is
about the two-point disjoint polymer partition functions directly. It will be proven in Section 4.
Theorem 1.5. Fix any real numbers x1 < x2 and y1 ∈ R. Let A ⊆ C([0, K],R) for some K > 0 be
an increasing Borel measurable set. Then for any s < t, R > 0, and a.e. f ∈ C([y1 − R, y1],R),

P
(
log K2((x1, x2), s; (y1, ·), t)|[y1,y1+K] − log Z(x1, s; y1, t) ∈ A

∣∣∣ log Z(x1, s; ·, t)|[y1−R,y1] = f
)

≤ P
(
log Z(x2, s; ·, t)|[y1,y1+K] ∈ A

)
.

The same also holds when the conditioning is replaced by log Z(x1, s; y1, t)|[y1−R,y1] ≥ f . The same
also holds under both conditionings when +K and −R are simultaneously replaced by −K and +R
in the above.

There are a number of natural generalizations of Theorem 1.5 one can consider, such as studying
Kn rather than K2, or allowing x2 to vary as well. Some of these generalizations are in fact obtainable
rather quickly by similar arguments as presented in this paper. We discuss this further in Section 5.

The logarithmic shift and exp(−cL2) error terms in Theorems 1.3 and 1.4 arise when moving from
log K((x1, x2), s; (y1, ·), t) to ĥt,2, as this requires certain approximations and modulus of continuity
bounds to hold. This is an instantiation of the role of entropy as the source of these error terms,
since, as mentioned above, the difference between log K2 and ĥt,2 is precisely that the latter (actually,
log Z2 = ĥt,2 + ĥt,1) is a limit of the former after K2 is normalized by an entropy factor, the product
of Vandermonde determinants of the points x and y (see (3.1) ahead). See also Remark 2.2 ahead.

The proof of Theorem 1.5 goes via first establishing an analogous statement for the log-gamma
polymer model; this is stated ahead in Section 2 as Theorem 2.1. The log-gamma polymer model
is a discrete polymer model on Z2 first introduced in [Sep12a], which we define more precisely
in Section 2.1. It is an integrable model, here meaning that there are exact formulas for the
joint distribution of various quantities of interest (such as the analogs of Zi). Perhaps somewhat
surprisingly, this integrability seems important for the validity of the result; indeed, there exist
counterexamples to the inequality stated in Theorem 2.1 for other distributions on the vertex
weights; see Remark 2.5. This is in contrast to the situation in zero temperature, where for all i.i.d.
vertex weight distributions the BK inequality holds, in its original form for the primal environment
as described at the beginning of the paper as well as certain versions of the line ensemble form.
Remark 1.6 (Terminology). As already indicated, the form of the inequalities we prove differ from
(1.1), and in fact it is not clear what is the correct or sharpest analog of (1.1) is for the KPZ line
ensemble. Nevertheless, as we have already been doing, we will sometimes still refer, somewhat
loosely, to the inequalities we do prove for the KPZ line ensemble (Theorems 1.3 and 1.4) as well as
one we prove for the continuum directed random polymer (Theorem 1.5) as the BK inequality. In
that sense the term can be thought of as referring to a class of inequalities which, broadly, control
the behavior of the second curve conditional on the first curve in terms of an unconditioned copy of
the first curve.
1.5. Applications. The BK inequality and variants of it have already proven to be very useful in
studies involving line ensembles in the KPZ universality class. Here we briefly discuss its role in two
works, [GH22] and [GHZ23].

The first work, [GH22], studies upper tail behavior of the first curve of line ensembles satisfying
certain natural assumptions like correlation inequalities by making use of probabilistic resampling
ideas. The results are of two types: the first type obtains sharp upper and lower bounds on the
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probability of upper tail events, while the second type describes the limit shape or fluctuation
behavior of the line ensembles when conditioned on such events. In fact, the latter is an ingredient
of the proofs of the former. To establish the fluctuation behavior of the top curve under an upper
tail conditioning, one needs to know that the conditioning does not cause the second curve to rise
too high (e.g., in zero temperature, this would force the first curve to move up as well, affecting the
fluctuations). The BK inequality is a natural tool which provides exactly such a guarantee, and
(in fact, a much weaker version) is one of the assumptions imposed on the line ensembles for the
framework of [GH22] to apply; the arguments of the paper are not sensitive to the precise form of
the inequality. Further, the BK inequality (1.1) was proved in [GH22] for the parabolic Airy line
ensemble, but a (weaker) version for the KPZ line ensemble was only conjectured (in an earlier
version).

Our Theorem 1.3 is sufficient to meet the requirements of the framework developed in [GH22].
Consequently, the KPZ line ensemble results, including the sharp upper tail estimates for the KPZ
equation, also follow (as now formally recorded in [GH22] in the latest arXiv version). More precisely,
the earlier conjectured inequality in [GH22] stated that the KPZ line ensemble satisfies a form of the
BK inequality with a shift that is logarithmic in the size of the interval over which the first curve is
conditioned on, rather than a function of the values of the first curve as proved in Theorem 1.4.
Based on the entropic source of the shift as discussed above, we believe that conjecture is too strong
to be true as stated. In any case, on a practical level, Theorem 1.4 would suffice for taking the place
of such an inequality in most arguments (as was the case in [GH22] itself).

The second work, [GHZ23], also studies upper tail behavior, but of certain path measures
associated to the first curve of the line ensembles. More precisely, in zero temperature, the first
curve of the parabolic Airy line ensemble records the weight of a geodesic in the directed landscape
started at (0, 0) as the endpoint varies along a horizontal line, while in positive temperature, the
first curve of the KPZ line ensemble records the free energy of a polymer starting at (0, 0) as its
endpoint varies in the same way. In both cases we have an associated path measure, namely the law
of the geodesic and the annealed polymer measure, respectively. [GHZ23] established that, when
conditioned on the first curve of the respective line ensembles to be large and taking the largeness
parameter to ∞, the path measures (appropriately rescaled) in both cases converge to a Brownian
bridge. Theorem 1.3 is a crucial input to the proofs, and is used in a number of locations for similar
reasons as in [GH22].

We note that chronologically it is somewhat unusual that this paper appears subsequent to the
above mentioned papers [GH22] or [GHZ23] for which it serves as an input. This is due to the
fact that one of the roles of this paper is to fix an earlier incorrect formulation and proof of the
BK inequality of the KPZ line ensemble that those papers relied on. We also emphasize that the
arguments in this paper have no dependencies that create a circular argument with the previous
papers. In particular, this paper is self-contained except for the use of some basic properties and
estimates for the objects of interest.

1.6. Ideas of proofs. As mentioned above, the first key step is to reduce Theorem 1.4 to Theorem 1.5.
Then to get Theorem 1.5, we consider the log-gamma polymer model, to be introduced in Section 2.1.
It is a discrete model, and is known to converge to the CDRP under appropriate scaling (see
Lemma 4.1 below). Under the geometric Robinson-Schensted-Knuth (gRSK) correspondence (see
e.g., [COSZ14]), the log-gamma polymer can be mapped to another collection of random variables,
which can be viewed as a discrete line ensemble. This is the prelimit analog of the connection
between the CDRP and the KPZ line ensemble.

We note that it is more convenient for us to work with the log-gamma polymer than CDRP.
Indeed, unlike the KPZ line ensemble, the log-gamma polymer discrete line ensemble consists of
finitely many random variables; and exact expressions for its joint distributions are available (see
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(m, n)

(1, 1)

(m, n)

(1, 1)

(m, n)(1, n)

(a, n − a + 1)

(m + 1, n) (m + n, n)

(m + ℓ, ℓ)

Figure 1. The left and middle panels depict the endpoints whose partition functions
define the left and right line ensembles (black vertices), respectively, in the right panel.
Proposition 2.10 says that the partition function in the original environment when the
starting point is on the bottom line and the ending point is on the top or right boundaries
equals a certain partition function in the combined line ensemble depicted on the right
(some paths which contribute to the latter are shown). Note that the two line ensembles are
connected by an auxiliary column of vertices shown in white; these vertices have associated
weights which prevent a certain double counting from appearing in the weights of certain
paths in the joint line ensemble, which is needed for Proposition 2.10.

e.g., Lemma 2.15). In particular, it also has a Markovian structure. We will prove the log-gamma
version of the BK inequality (Theorem 2.1), and then pass to a scaling limit to obtain Theorem 1.5.

To prove Theorem 2.1 we prove an extension of a well-known identity [Cor21, NY04] of disjoint
path partition functions in the log-gamma environment and that in the associated discrete line
ensemble; the form of this extension in the zero temperature case was communicated to us a few years
ago by Duncan Dauvergne. The original identity (and its earlier zero temperature analog [DOV22])
required the starting points of the paths to be on the bottom-most line and the ending points to be
on the top most line. Here we relax the requirement imposed on the ending points and allow them
to also be on the right boundary, at the cost of the identity requiring an additional line ensemble to
be introduced (associated to the same log-gamma environment but for paths whose ending points
vary in the vertical direction rather than horizontal); see Figure 1. In a sense this extension is very
natural since the gRSK correspondence is precisely a bijection when including partition functions
whose endpoints are the top and right boundaries; however, the partition functions that make up
the second line ensemble are not defined by endpoints varying on the right boundary but on the left
boundary.

Then we work with the partition function of two disjoint log-gamma polymers. Using the above
mentioned identity, we relate it to the single polymer partition function in a smaller environment.
A key observation is that, conditional on the top line of the line ensemble, the latter partition
function’s law can be written as a reweighting of the law of the partition function in the original
environment explicitly. Moreover, the reweighting has a negative effect. This gives us the inequality
by invoking the FKG inequality for the underlying i.i.d. random variables.

1.7. Organization of paper. In Section 2 we introduce the log-gamma polymer model and prove
the version of the BK inequality for disjoint polymers (the analog of Theorem 1.5) for it. In Section 3,
we introduce some basic estimates and properties of the main objects in the paper. These are all
fairly well-known, but a couple have their proofs deferred to Appendix A. Finally, in Section 4, we
perform the scaling limit to obtain Theorem 1.5 and give the argument that uses the latter to yield
Theorem 1.3.

Notation. Throughout this paper, we will use C, c > 0 to denote large and small constants, whose
values may, and often will, change from line to line. For any x, y ∈ R ∪ {−∞, ∞} with x ≤ y, we
denote [[x, y]] = [x, y] ∩ Z.
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For any m ∈ N, we recall the simplex Λm defined by

Λm = {(t1, · · · , tm) : t1 ≤ · · · ≤ tm},

and for any s < t,
Λm([s, t]) = {(t1, · · · , tm) : s ≤ t1 ≤ · · · ≤ tm ≤ t}.

We use Λ̊m and Λ̊m([s, t]) to denote the interiors of Λm and Λm([s, t]), respectively.
For any topological space X , we use C(X ,R) to denote the space of real continuous functions on

X with the uniform topology.
We will occasionally use notation such as P( · | X = K) for a random element X in some space

and a deterministic element K of the same space to denote the conditional probability distribution
given that X = K. The precise meaning of this is to consider the regular conditional distribution
P( · | X) (which exists in the situations we consider by well-known abstract results such as [Kal22,
Theorem 8.5]) and evaluate the associated probability kernel at K. In discrete settings such as in
Section 2 these expressions can be defined much more directly, of course.

Acknowledgements. SG was partially supported by NSF CAREER grant DMS-1945172 and
a Miller Professorship at The Miller Institute of Basic Research in Science. MH was partially
supported by NSF grants DMS-1937254 and DMS-2348156, and by the NTU Support Grant for
Research Award Number #025661-00007. LZ is supported by the NSF grant DMS-2505625. The
authors first learned a version of the extended invariance identity (Proposition 2.10, in the zero
temperature setting) from Duncan Dauvergne a few years ago, and we thank him for allowing us to
state and use it in this paper. The authors would also like to thank Amol Aggarwal and Jiaoyang
Huang for some helpful discussions.

2. BK for disjoint endpoints in log-gamma

As mentioned in Section 1.6 on the ideas of the proof, to prove Theorem 1.5 we work with
the log-gamma polymer model, which we recall in Section 2.1. For the latter, our main result
in this section is Theorem 2.1, its version of the BK inequality. Another important ingredient is
the extended invariance identity for partition functions in a given environment and that in the
associated line ensemble, stated ahead in Section 2.3 as Proposition 2.10.

2.1. The log-gamma polymer model. The log-gamma model was introduced in [Sep12b], and is
defined as follows. Take θ > 0, and let {Xv}v∈Z2 be independent random variables with inverse-
gamma distribution of parameter θ; i.e., with probability density given by

1
Γ(θ)x−θ−1 exp(−x−1) for x > 0. (2.1)

For any u, v ∈ Z2 with u ≤ v in each coordinate, and k ∈ N, we define the k disjoint polymer
partition function

Tk(u, v) :=
∑

(γ1,...,γk)

k∏
j=1

∏
w∈γj

Xw, (2.2)

where the summation is over all collections of k vertex-disjoint up-right paths (γ1, . . . , γk), with
each γi from u + (i − 1, 0) to v + (−k + i, 0). (By convention, Tk(u, v) := 0 if no such collection of
paths exists.)

We will often need a slight generalization of the previous definition. Take any 2k vertices
u1, . . . , uk, v1, . . . , vk ∈ Z2, such that for each i, j ∈ J1, kK, ui ≤ vj in each coordinate, and any
up-right path from ui to vj and any up-right path from uj to vi must intersect (e.g., all the ui lie
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on the same horizontal line in order and the same for the vj). We define the k disjoint polymer
partition function

T ([u1, . . . , uk], [v1, . . . , vk]) :=
∑

(γ1,...,γk)

k∏
j=1

∏
w∈γj

Xw, (2.3)

where the summation is over all collections of k vertex-disjoint up-right paths (γ1, . . . , γk), with
each γi from ui to vi. In particular, it is again taken to be zero if no such collection of paths exists.

Our main result for the log-gamma polymer is the following prelimiting version of Theorem 1.5.
It will be proven in Section 2.5.

Theorem 2.1. Let θ > 0. For any integers m, n ≥ 2, f : J1, mK → R+, and increasing Borel
measurable set A ⊆ R(m−1)(n−1),

P
({

f(m)−1T ([(1, 1), (a, 1)], [(m, n), (m, b)])
}

a∈J2,mK,b∈J1,n−1K
∈ A

∣∣∣ T1((1, 1), (·, n))|J1,mK = f

)
≤ P

({
T1((a − 1, 1), (m − 1, b))

}
a∈J2,mK,b∈J1,n−1K

∈ A
)

.

Remark 2.2. We point out that Theorem 2.1 holds when the pair of starting points and the pair
of ending points are adjacent (i.e., a = 2 and b = n − 1), in which case

T ([(1, 1), (a, 1)], [(m, n), (m, b)])/T1((1, 1), (m, n))

is precisely the second curve of the discrete log-gamma line ensemble (associated to system size n).
Thus one might expect to be able to take a limit of Theorem 2.1 in this special case directly to the
KPZ line ensemble and obtain the BK inequality without the logarithmic shift and probability error
term present in Theorem 1.4.

However, the issue is that the righthand side of Theorem 2.1 involves the first curve of the
log-gamma diffusion associated to system size n − 1. Typically, due to entropy considerations, the
first curve of the (n − 1)-system line ensemble is log n higher than the second curve of the n-system.
More precisely, this is essentially because the probability of two random walks of length n started
at a unit order separation have probability of order n−1/2 of remaining disjoint for their lifetimes.
This logarithmic shift is seen on a technical level in the fact that the centering terms required to
take the limit to the KPZ line ensemble differs by log n between the two system sizes (as can be
read off of Lemma 4.1 ahead). As a result, the limiting inequality obtained is trivial.

The crucial aspect of Theorem 2.1 is that it allows points to be separate, which avoid this issue.
The strategy is thus to take the limit when the endpoints are separate on the diffusive scale (so
the underlying random walks have unit order probability of remaining disjoint) and to make use
of modulus of continuity properties in the limit in order to make the points coincide. This will be
done in Sections 3 and 4.

Notice that Theorem 2.1 allows the second endpoint to vary on the vertical line {(m, b) : b ∈
J1, n − 1K}. In the scaling limit to the CDRP, this corresponds to the endpoint varying temporally.
However, it will be more convenient to allow the point to vary spatially, as these partition functions
are what is captured by the KPZ line ensemble. For this, we record the following simple corollary
that instead allows the second endpoint to vary on the horizontal line of index n − 1.

Corollary 2.3. Let θ > 0. For any integers b, m, n ≥ 2 with b < m and function f : J1, bK → R,
the following holds. Let {T̃ ([(1, 1), (a, 1)], [(b, n), (b′, n − 1)])}a∈J2,bK,b′∈Jb+1,mK be sampled from the
conditional law of

{T ([(1, 1), (a, 1)], [(b, n), (b′, n − 1)])}a∈J2,bK,b′∈Jb+1,mK given T1((1, 1), (·, n))|J1,bK = f.
10



Then, there exists a coupling of the law of {T̃ ([(1, 1), (a, 1)], [(b, n), (b′, n − 1)])}a∈J2,bK,b′∈Jb+1,mK and
that of {T1((a, 1), (b′, n − 1))}a∈J2,bK,b′∈Jb+1,mK such that, for all a ∈ J1, bK and b′ ∈ Jb + 1, mK,

f(b)−1T̃ ([(1, 1), (a, 1)], [(b, n), (b′, n − 1)]) ≤ T1((a − 1, 1), (b′ − 1, n − 1)).

Proof. The proof idea is to first use the coupling from Theorem 2.1 to obtain a pair of environments
such that the associated partition functions on the right boundary have the correct marginal
distribution (one conditional on T1 and the other not) and are dominated in the way specified there.
Then, one augments both environments (i.e., extending the coupling) by inserting columns to the
right of x = m of the same i.i.d. inverse gamma random variables in both systems. This will imply
a domination of the partition functions to the (n − 1)st line by a recursion. The details are below.

By Theorem 2.1 and Strassen’s theorem on stochastic domination (see, e.g., [Lin99]), it follows
that there exists a coupling between {T̃ ([(1, 1), (a, 1)], [(b, n), (b, ℓ)])}a∈J2,bK,ℓ∈J1,n−1K and {T1((a −
1, 1), (b − 1, ℓ))}a∈J2,bK,ℓ∈J1,n−1K such that, almost surely, for all a ∈ J2, bK, ℓ ∈ J1, n − 1K,

f(b)−1T̃ ([(1, 1), (a, 1)], [(b, n), (b, ℓ)]) ≤ T1((a − 1, 1), (b − 1, ℓ)). (2.4)

Next consider an i.i.d. collection {X(i,j)}i∈Jb+1,mK,j∈J1,n−1K of inverse gamma random variables. For
b′ ∈ Jb + 1, mK, define

τ̃([(1, 1), (a, 1)], [(b, n), (b′, n − 1)]) :=
n−1∑
ℓ=1

T̃ ([(1, 1), (a, 1)], [(b, n), (b, ℓ)]) ·
∑

γ:(b+1,ℓ)→(b′,n−1)

∏
(i,j)∈γ

X(i,j),

τ1((a − 1, 1), (b′ − 1, n − 1)) :=
n−1∑
ℓ=1

T1((a − 1, 1), (b − 1, ℓ)) ·
∑

γ:(b+1,ℓ)→(b′,n−1)

∏
(i,j)∈γ

X(i,j).

Observe that, by (2.4),

f(b)−1τ̃([(1, 1), (a, 1)], [(b, n), (b′, n − 1)]) ≤ τ1((a − 1, 1), (b′ − 1, n − 1)) (2.5)

holds for all a ∈ J2, bK and b′ ∈ Jb + 1, mK.
It follows immediately from the definition (2.3) of T that {τ̃([(1, 1), (a, 1)], [(b, n), (b′, n−1)])}a∈J2,bK,b′∈Jb+1,mK

has the law of

{T ([(1, 1), (a, 1)], [(b, n), (b′, n − 1)])}a∈J2,bK,b′∈Jb+1,mK conditioned on T1((1, 1), (·, n))|J1,bK = f.

Similarly, τ1((a − 1, 1), (b′ − 1, n − 1))a∈J2,bK,b′∈Jb+1,mK has the law of {T1((a − 1, 1), (b′ − 1, n −
1))}a∈J2,bK,b′∈Jb+1,mK. This along with (2.5) completes the proof. □

Remark 2.4. Note that Corollary 2.3 only allows the second endpoint to vary horizontally to the
right of the last point (m, n) whose associated partition function value is conditioned on. This is
the source of the analogous ordering of intervals present in Theorems 1.4 and 1.5.

Remark 2.5 (Non-validity of Theorem 2.1 for Bernoulli distributions). We point out that Theo-
rem 2.1 is not true for general distributions, and thus the integrability of the log-gamma polymer
model seems to play a crucial role in its validity. Indeed, consider the case of m = n = 2
with {Xv}v∈J1,2K2 being i.i.d. Bernoulli(p) random variables for any p ∈ (0, 1) (i.e., P(Xv = 1) =
1−P(Xv = 0) = p). For notational convenience, write T

(2)
1 = T1((1, 1), (2, 2)), T

(1)
1 = T1((1, 1), (1, 1))

(the superscripts indicating the system size), and T
(2)
2 = T2((1, 1), (2, 2)). Then observe that

T
(1)
1 = X(1,1),

T
(2)
1 = X(1,1)X(2,2)

(
X(1,2) + X(2,1)

)
, and

T
(2)
2 = X(1,1)X(1,2)X(2,1)X(2,2).
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If we condition on T
(2)
1 = 2, we force X(1,1) = X(1,2) = X(2,1) = X(2,2) = 1. So T

(2)
2 /T

(2)
1 = 1

2 almost
surely. Thus it holds that

P
(
2−1T

(2)
2 ≥ t | T

(2)
1 = 2

)
= 1 for all t ≤ 1

2 .

On the other hand, for any t > 0,

P
(
T

(1)
1 ≥ t

)
≤ P

(
T

(1)
1 ≥ 1

)
= p < 1,

as T
(1)
1 = X(1,1) is a Bernoulli(p) random variable. Thus the main display of Theorem 2.1 does not

hold when t ∈ (0, 1
2 ], for any p ∈ (0, 1).

Though in this example there was complete freezing of all the vertex variables, this is not necessary.
Indeed, one can consider vertex weights distributed as i.i.d. random variables uniform on [0, 1]. Then
T

(2)
1 ≤ 2 almost surely again. If one fixes δ ∈ (0, 1

2) and conditions on T
(2)
1 ≥ 2 − δ, it follows that

min(X(1,1), X(2,2))) ≥ 1 − 1
3δ and min(X(1,2), X(2,1)) ≥ 1 − 2

3δ almost surely. So, under the same
conditioning, T

(2)
2 ∈ [1 − 2δ, 1] almost surely, since (1 − 1

3δ)2(1 − 2
3δ)2 ≥ 1 − 2δ. Thus,

P
(

T
(2)
2

T
(2)
1

≥ t
∣∣∣ T

(2)
1 ≥ 2 − δ

)
= 1 for all t ≤ 1

2 − δ.

But P(T (1)
1 ≥ t) = 1 − t < 1 for all t ∈ (0, 1], yielding that the inequality of Theorem 2.1 does

not hold whenever t ∈ (0, 1
2 − δ]. Thus violations to the inequality also exist among continuous

distribution and in the absence of complete freezing.
2.2. Geometric RSK for general polymer models on Z2. In this section we recall some basic
facts about the geometric RSK (gRSK) correspondence in the context of general polymer models
on Z2 that will be needed in the proof of Theorem 2.1. In particular, in this section as well as
in Section 2.3, we work in the setting where {Xv}v∈Z2 is simply a collection of non-negative real
numbers. Quantities like Tk are defined as in (2.2) and (2.3).

The gRSK correspondence can be defined via either row/column insertion algorithms (see e.g.,
[COSZ14, Section 2]), or disjoint paths. We take the latter one, which involves defining certain
partition functions Zj by

Z1(u, v) := T1(u, v), and Zj(u, v) := Tj(u, v)
Tj−1(u, v) for j ≥ 2 (2.6)

(with the convention of taking Zj(u, v) := 0 when Tj−1(u, v) = 0).
Remark 2.6. We note that Zj for j ≥ 2 is not quite a discrete analog of Zj as defined in (1.4). The
difference is that the former is the ratio of partition functions for j and j − 1 disjoint polymers while
the latter is the partition function for j disjoint polymers. This discrepancy arises from differing
notation in two parts of the literature ([COSZ14] for Zj and [OW16] for Zj) and we have chosen to
be consistent with both.

For a fixed starting point such as (1, 1), we view {Zj}n
j=1 with the ending point varying as a line

ensemble, with Zj the values of the jth line. Indeed, taking appropriate scaling limits of this line
ensemble results in the KPZ or parabolic Airy line ensembles (see [Wu23c] along with [Dim22], and
[AH23, Corollary 25.2], respectively).

Disjoint polymer partition functions can be expressed as a determinant, a fact which will be very
useful for us. The first equality in the following is an immediate consequence of the Lindström-
Gessel-Viennot lemma [GV89, Corollary 2] and the second is by definition (2.6).
Lemma 2.7. Suppose (u1, . . . , uk) and (v1, . . . , vk) satisfy the condition stated before (2.2). Then,

T ([u1, . . . , uk], [v1, . . . , vk]) = det (T1(ui, vj))k
i,j=1 = det (Z1(ui, vj))k

i,j=1 .
12



Figure 2. Left: the orange lines connect the common starting point and varying ending
points of the paths whose partition functions determine the values of Zm,n

j (i) for (i, j) ∈
J1[m, n], and therefore also of {Yv}v∈V1[m,n]. Right: the blue lines connect the varying
starting points and common ending point of the paths whose partition functions determine
the values of Zm,n

j (i) for (i, j) ∈ J2[m, n], and therefore also of {Yv}v∈V2[m,n]. Note that in
both cases the partition functions of the paths joining (1, 1) and (m, n) are included, which
implies that Zm,n

j (m) = Zm,n
j (m + 1) for all j ∈ J1, nK.

We mention that [GV89] works in a setting in which weights are assigned to edges rather than
vertices, but the statement nevertheless applies to our setting by an appropriate procedure of
assigning the vertex weights to the edges; see the brief discussion in [Cor21, Section 2.2.4] for
details. We also mention that [GV89, Corollary 2] applies to all directed acyclic graphs, expressing
multi-path disjoint partition functions as determinants of matrices whose entries are given by single
path partition functions.

2.3. An extended invariance identity. We work on the domain J1, mK× J1, nK. Here, one should
think of m as being much larger than n, though this is not formally imposed or needed.

For the convenience of notation, denote T0((1, 1), (m, n)) = 1, and (1, 1)0 = (m, n)0 = ∅, and
(1, 1)k = [(1, 1), . . . , (k, 1)], (m, n)k = [(m, n), . . . , (m, n − k + 1)], for each k ∈ N.

Recall that Proposition 2.8 equated the disjoint polymer partition functions T to partition
functions in the line ensemble Y , under the condition that the starting points were on the bottom
line and the ending points on the top line. The aim of this section is an alternate representation for
the partition function where the endpoint is not on the top line, also in terms of partition functions
in the line ensemble. This is Proposition 2.10, which we state just ahead after introducing some
notation. This result and its proof hold deterministically for all non-negative vertex weights, not
just i.i.d. inverse-gamma weights.

2.3.1. Notation. We introduce some useful notation. Define the index sets J1[m, n], J2[m, n], and
J [m, n] by (see Figure 4)

J1[m, n] :=
{

(i, j) ∈ Z2 : 1 ≤ j ≤ min{i, n}, 1 ≤ i ≤ m
}

,

J2[m, n] :=
{

(i, j) ∈ Z2 : 1 ≤ j ≤ min{m + n + 1 − i, m}, m + 1 ≤ i ≤ m + n
}

, and
J [m, n] := J1[m, n] ∪ J2[m, n].

(2.7)

Now, for any m, n ∈ N, and each (i, j) ∈ J1[m, n], denote (see Figure 2)

Zm,n
j (i) = Zj((1, 1), (i, n)), (2.8)

and for each (i, j) ∈ J2[m, n], denote

Zm,n
j (i) = Zj((1, i − m), (m, n)). (2.9)

These are, respectively, the line ensembles associated to the partition functions indicated in the left
and right panels of Figure 2.
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(a1, 1) (a2, 1)

(b1, n) (b2, n) (a1, 1)�

(a2, 1)�

(b1, n) (b2, n)

Figure 3. A depiction of the coordinates in Proposition 2.8.

We wish to associate weights Y to the vertices of the line ensembles defined by Zm,n, but there
is a minor annoyance in the indexing. Namely, Zm,n

j ’s values should be associated to the jth line
from the top of the line ensemble, which in the usual coordinates has y-coordinate n − j + 1. To
streamline the presentation, we define V1[m, n] and V2[m, n] (V for vertices) by

V1[m, n] =
{

(i, j) : (i, n + 1 − j) ∈ J1[m, n]
}

and

V2[m, n] =
{

(i, j) : (i, n + 1 − j) ∈ J2[m, n]
}

.

For each (i, j) ∈ V1[m, n], let

Y(i,j) :=
Zm,n

n+1−j(i)
Zm,n

n+1−j(i − 1) (2.10)

where we use the convention that Zm,n
j (0) = 1. Next, for each (i, j) ∈ V2[m, n], let

Y(i,j) :=
Zm,n

n+1−j(i)
Zm,n

n+1−j(i + 1) . (2.11)

Thus Y |V1[m,n] are the multiplicative increments of the line ensemble associated to the partition
functions indicated on the left panel of Figure 2, while Y |V2[m,n] is that associated to the right panel.

2.3.2. Invariance identity for endpoints on top line. In this subsection we state the previously known
invariance identity for when the endpoints are on the top line, before stating the extended version
in Section 2.3.4. We first define a partition function in the line ensemble Y restricted to V1[m, n].

For any k ∈ N and any u1, . . . , uk, v1, . . . , vk ∈ V1[m, n] satisfying the condition above (2.3), we
define

S
(
[u1, . . . , uk], [v1, . . . , vk]

)
:=

∑
(γ1,...,γk)

∏
w∈∪k

i=1γi

Yw, (2.12)

where the summation is over all tuples of disjoint up-right paths (γ1, . . . , γk), with γi from ui to vi

for i ∈ J1, kK. Since the Y are multiplicative increments of Z, the above definition is a partition
function in the environment given by Y and induced by the line ensemble, analogous to (2.3).

It will be convenient to write, for x ∈ N, (x, 1)� = (x, max{n − x + 1, 1}). See Figure 3.

Proposition 2.8 ([NY04, Theorem 1.7], [Cor21, Theorem 1.1]). Fix any set of non-negative weights
{Xv}v∈Z2 and define T and S as in (2.3) and (2.12) with these weights. Then for any k ∈ N,
integers 1 ≤ a1 < . . . < ak < b1 < . . . < bk, and n ≥ 2, deterministically,

T
(
[(a1, 1), . . . , (ak, 1)], [(b1, n), . . . , (bk, n)]

)
= S

(
[(a1, 1)�, . . . , (ak, 1)�], [(b1, n), . . . , (bk, n)]

)
.

Next we move to giving some setup to state the extended invariance identity. We will need to
introduce a mildly larger graph which connects the vertex sets V1[m, n] and V2[m, n] and their
associated line ensembles, which we do in the next subsection.
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2.3.3. Underlying graph. To combine the line ensembles associated to V1[m, n] and V2[m, n] as just
mentioned, we introduce a vertical line of auxiliary vertices with associated weights (at this stage
this may seem artificial, but it will make the extended invariance identity Proposition 2.10 cleaner
to state); these are the vertices denoted by unfilled circles in Figure 4. We label these vertices as
(m + 1

2 , j) for j ∈ J1, nK and the weight Y(m+ 1
2 ,j) associated to (m + 1

2 , j) is given by

Y(m+ 1
2 ,j) = Zm,n

n+1−j(m)−1. (2.13)

Next we specify the edges and their orientation in the graph underlying the line ensemble Y ,
which explains the joining of the two that was mentioned just above. See Figure 4 for a depiction.
In words, the edges in the left line ensemble are directed right and up, while the edges in the right
line ensemble are directed right and down, and there is a right-directed edge connecting (m, j) with
(m + 1

2 , j) as well as (m + 1
2 , j) with (m + 1, j).

More formally, for (i, j) ∈ V1[m, n], (i, j) is connected with (i+1, j) and (i, j +1) in that direction,
so long as the corresponding latter endpoint is a member of V1[m, n]. Each (i, j) ∈ V2[m, n] is
connected with (i + 1, j) and (i, j − 1) in that direction, so long as the corresponding latter endpoint
is a member of V2[m, n]. Finally, we connect (m, j) with (m + 1

2 , j) and (m + 1
2 , j) with (m + 1, j),

in the mentioned direction in both cases.

2.3.4. Partition functions. With this preparation we may define partition functions in this combined
line ensemble and then give the extended invariance identity, Proposition 2.10. First, by paths we
simply mean paths in the directed graph just specified. Denote the vertex set of this graph by

V [m, n] := V1[m, n] ∪ V2[m, n] ∪
{

(m + 1
2 , j) : j ∈ J1, min(m, n)K

}
.

Then for any k ∈ N and any u1, . . . , uk, v1, . . . , vk ∈ V , define

S([u1, . . . , uk], [v1, . . . , vk]) :=
∑

(γ1,...,γk)

∏
w∈∪k

i=1γi

Yw, (2.14)

with the value of the empty sum set to 0 by convention. Note that this indeed agrees with the
definition of S given in (2.12) when ui, vi ∈ V1[m, n].

Remark 2.9. We make a few simple observations about the nature of paths in this joint line
ensemble to familiarize the reader; see Figure 4. By definition, they go up-right in the left part of
the ensemble, and down-right in the right part. As a result, the path cannot cross from the left to
the right at a line below that of the left or right endpoints. Finally, to move from the left side to
the right side, it must necessarily pass through all three of (m, j), (m + 1

2 , j), and (m + 1, j) for a
unique j ∈ J1, min(m, n)K, as there are no vertical edges in the vertical line x = m + 1

2 .

(m, n)

(a, n − a + 1)

(m + 1, n) (m + n, n)

(m + b, b)

Figure 4. A depiction of the graph underlying the line ensembles. Up to swapping the
y-coordinate j by n + 1 − j, these also depict the coordinates associated to the index sets
J1[m, n] and J2[m, n], respectively. The paths in red, blue, and orange are examples of the
paths contributing to the partition function S([(a, 1)�], [(m + b, b)]); they go up-right in the
left line ensemble, and down-right in the right line ensemble.

15



Next we state the extended invariance identity, which (in the zero temperature setting) we
first learned from Duncan Dauvergne through private communication. For j ∈ J1, nK, define
(m, j)� = (m + j, j). Recall also that for i ∈ J1, mK, (i, 1)� = (i, n − i + 1).

Proposition 2.10 (Extended invariance identity). Let k ∈ N and ℓ ∈ N ∪ {0} with 0 ≤ ℓ ≤ k
(here, ℓ will be the number of endpoints on the top boundary). Let 1 ≤ a1 < . . . < ak ≤ m,
1 ≤ b1 < . . . < bℓ ≤ m, n > bℓ+1 > . . . > bk ≥ 1. Then

T ([(a1, 1), . . . , (ak, 1)], [(b1, n), . . . , (bℓ, n), (m, bℓ+1), . . . , (m, bk)])
= S

(
[(a1, 1)�, . . . , (ak, 1)�], [(b1, n), . . . , (bℓ, n), (m, bℓ+1)�, . . . , (m, bk)�]

)
.

The conditions on ai and bi are merely to ensure planar ordering of the points in the primal
environment so as to ensure that the partition function is non-zero. Observe that the same condition
also ensures the planar ordering of the corresponding points in the line ensemble, thus guaranteeing
that that partition function is also non-zero.

Before turning to the proof of Proposition 2.10, we record a quick consequence of it that will be
important for our overall arguments towards Theorem 2.1. To state it, for any integers 1 ≤ a ≤ m

and 1 ≤ b ≤ n, we define a function F m,n
a,b : RJ [m,n]

+ → R+, by

F m,n
a,b ({Zm,n

j (i)}(i,j)∈J [m,n]) := S([(a, 1)�], [(m, b)�]). (2.15)

Corollary 2.11. For any integers 1 ≤ a ≤ m and 1 ≤ b ≤ n,
T1((a, 1), (m, b)) = F m,n

a,b ({Zm,n
j (i)}(i,j)∈J [m,n]), (2.16)

and for any 2 ≤ a ≤ m and 1 ≤ b ≤ n − 1,
T ([(1, 1), (a, 1)], [(m, n), (m, b)])

T1((1, 1), (m, n)) = F m−1,n−1
a−1,b ({Zm,n

j+1 (i + 1)}(i,j)∈J [m−1,n−1]). (2.17)

Observe that the (2.17) asserts that the lefthand side, a ratio of the partition function of two
disjoint paths with that of a single one, is a single-path partition function in a smaller line ensemble
obtained by removing the top line of the original line ensemble. Our argument for Theorem 2.1
will make crucial use of this observation after writing out the relation of the laws of these two line
ensembles.

Proof of Corollary 2.11. First, (2.16) is simply a restatement of the k = 1 case of Proposition 2.10.
Next, again by Proposition 2.10,

T ([(1, 1), (a, 1)], [(m, n), (m, b)]) = S([(1, 1)�, (a, 1)�], [(m, n), (m, b)�]).
Observe that on the righthand side, there is a single path from (1, n) to (m, n). So the righthand
side factorizes as

S([(1, 1)�], [(m, n)])·
min{a,n−b+1}∑

k=2
S([(a, 1)�], [(m, n−k+1)])·Zm,n

n−k+1(m)−1·S([(m, n−k+1)], [(m, b)�]),

where the sum is precisely the partition function of a single path in S from (a, 1)� to (m, b)� which
cannot use the top line. This yields, by an application of Proposition 2.10 again, that

T ([(1, 1), (a, 1)], [(m, n), (m, b)])
T1((1, 1), (m, n))

=
min{a,n−b+1}∑

k=2
S([(a, 1)�], [(m, n − k + 1)]) · Zm,n

n−k+1(m)−1 · S([(m, n − k + 1)], [(m, b)�]).

Now, this can be thought of as the partition function of a single path in the smaller line ensemble
consisting of only the bottom n−1 lines. We claim that it in fact exactly equals F m−1,n−1

a−1,b ({Zm,n
j+1 (i+
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1)}(i,j)∈J [m−1,n−1]). The proof is mainly keeping track of indices. More precisely, we first make the
substitution k 7→ k + 1 in the previous display, along with the definition of S from (2.14), to write
it as

min{a−1,n−b}∑
k=1

S([(a, 1)�], [(m, n − k)]) · Zm,n
n−k(m)−1 · S([(m, n − k)], [(m, b)�]) (2.18)

=
min{a−1,n−b}∑

k=1

∑
γ+

k

∏
v∈γ+

k

Yv

 · Zm,n
n−k(m)−1 ·

∑
γ−

k

∏
v∈γ−

k

Yv

 ,

where γ+
k is summed over all up-right paths in the line ensemble from (a, 1)� = (a, n − a + 1) to

(m, n − k) and γ−
k is summed over all down-right paths in the line ensemble from (m + 1, n − k) to

(m, b)� = (m + b, b).
We will now show that (2.18) equals F m−1,n−1

a−1,b ({Zm,n
j+1 (i + 1)}(i,j)∈J [m−1,n−1]) by keeping track of

the indices carefully. For this, first recall from (2.10) and (2.11) that Y(i,j) = Zm,n
n−j+1(i)/Zm,n

n−j+1(i−1)
when (i, j) ∈ V1[m, n] and Y(i,j) = Zm,n

n−j+1(i)/Zm,n
n−j+1(i + 1) when (i, j) ∈ V2[m, n]. Thus replacing

instances of Zm,n
n−j+1(i) with Zm,n

n−j+2(i + 1) and then (only in the subscript) replacing n by n − 1
amounts to replacing Yv by Yv+(1,0). Making use of this fact in the definition (2.15) of F m,n

a,b shows
that

F m−1,n−1
a−1,b

(
{Zm,n

j+1 (i + 1)}(i,j)∈J [m−1,n−1]
)

=
min{a−1,n−b}∑

k=1

∑
γ̃+

k

∏
v∈γ̃+

k

Yv+(1,0)

 · Zm,n
n−k(m)−1 ·

∑
γ̃−

k

∏
v∈γ̃−

k

Yv+(1,0)

 ,

where γ̃+
k is summed over all up-right paths in the line ensemble from (a−1, n−a+1) to (m−1, n−k)

and γ̃−
k is summed over all down-right paths in the line ensemble from (m, n − k) to (m − 1 + b, b).

Doing the substitution v 7→ v − (1, 0) in both products in the previous display then yields that it
equals (2.18), completing the proof. □

Now we turn to the proof of Proposition 2.10. Recall that ℓ is the number of the k paths whose
endpoints lie on the top boundary. The proof will reduce the proposition to the k = 1, ℓ = 0 case,
i.e., the case where we consider a single path’s partition function where the endpoint is on the right
boundary. We isolate that case as the following lemma, which we will prove in Section 2.3.5 after
giving the proof of Proposition 2.10 assuming it.

Lemma 2.12. Let 1 ≤ a ≤ m, 1 ≤ b ≤ n. Then

T ([(a, 1)], [(m, b)]) = S
(
[(a, 1)�, [(m, b)�]

)
.

Proof of Proposition 2.10. We first observe that it suffices to prove the case of k = 1. Indeed, by
the Lindström-Gessel-Viennot lemma [GV89, Corollary 2], each sides of the desired equality can be
expressed in the case of k ≥ 2 as determinants of matrices whose entries are given by single path
partition functions in the corresponding environments. If we establish the k = 1 case, then the
entries of these two matrices coincide and thus their determinants do as well.

When k = 1, ℓ = 0 or 1. The case of ℓ = 1 is addressed by Proposition 2.8. So it only remains
to handle the case of ℓ = 0, i.e., the case where the endpoint lies on the right boundary. This is
precisely Lemma 2.12. □

2.3.5. The extended invariance in the k = 1, ℓ = 0 case. Here we give the proof of Lemma 2.12. The
main step is the following lemma, whose proof will be given in Section 2.3.6.
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Lemma 2.13. For any integers 1 ≤ a ≤ m and 1 ≤ b ≤ n,

T1((a, 1), (m, b)) =
min{a,n−b+1}∑

k=1

T ([(1, 1)k−1, (a, 1)], [(m, n)k]) · T ([(1, 1)k], [(m, n)k−1, (m, b)])
Tk((1, 1), (m, n)) · Tk−1((1, 1), (m, n)) .

(2.19)
Moreover, for any 1 ≤ j ≤ a ≤ m and 1 ≤ b ≤ n − j + 1,

T ([(1, 1)j−1, (a, 1)], [(m, n)j−1, (m, b)])
Tj−1((1, 1), (m, n))

=
min{a,n−b+1}∑

k=j

T ([(1, 1)k−1, (a, 1)], [(m, n)k]) · T ([(1, 1)k], [(m, n)k−1, (m, b)])
Tk((1, 1), (m, n)) · Tk−1((1, 1), (m, n)) . (2.20)

Remark 2.14. In a simple case, the terms appearing in Lemma 2.13 can be understood directly. In-
deed, consider (2.19) with a = 2. Observe that the product of the partition functions T1((2, 1), (m, b))
and T1((1, 1), (m, n)) is the partition function of all pairs of paths such that the first is from (2, 1) to
(m, b) and the second is from (1, 1) to (m, n). This partition function can be broken into two terms:
the case where the two paths remain disjoint, and the case where they intersect. The partition func-
tion restricted to the first case is precisely T ([(1, 1), (2, 1)], [(m, n), (m, b)]). In the second case, we
can reroute the paths to obtain two new paths, one which connects (1, 1) and (m, b) and the second
which connects (2, 1) and (m, n). Thus the second term equals T1((1, 1), (m, b)) · T1((2, 1), (m, n)).
Putting it together we obtain,

T1((2, 1), (m, b)) · T1((1, 1), (m, n))
= T ([(1, 1), (2, 1)], [(m, n), (m, b)]) + T1((1, 1), (m, b)) · T1((2, 1), (m, n)),

which is equivalent to the determinant expression from Lemma 2.7. Now, dividing both sides
by T1((1, 1), (m, n)) yields precisely (2.19) in this particular case. The proof of Lemma 2.13 in
Section 2.3.6 will proceed by an analysis of larger determinants.

Proof of Lemma 2.12. The basic idea of the proof is to show that the kth summand in (2.19) is
exactly the contribution to S([(a, 1), (m, b)]) coming from the paths that cross from the left line
ensemble to the right one on the kth line from the top. Observe that a priori we have no handle on
the values of such partition functions unless k = 1, in which case we can apply the single-path case
of Proposition 2.8. The strategy to handle larger k is to pack the top k − 1 lines with paths (and
divide by the partition function of those k − 1 paths, which is the weight of a single configuration)
and then invoke the general k case of Proposition 2.8; this will essentially equate the kth of (2.19)
to the mentioned partition function. Observe that this packing indeed ensures that the endpoints in
the line ensemble are the same as would arise from k disjoint paths ending at the corner (m, n),
thus making Proposition 2.8 applicable.

Now we turn to the details, starting with some notation. For x, k ∈ N, let (x, 1)k,� = [(x, n), (x +
1, n − 1), . . . , (x + k − 1, n − k + 1)] and recall (m, n)k = [(m, n), (m, n − 1), . . . , (m, n − k + 1)]. Now,
looking at the first factor in the kth summand of (2.19), we observe that by Proposition 2.8, for any
k ∈ J1, min{a, n − b + 1}K,

T ([(1, 1)k−1, (a, 1)], [(m, n)k])
Tk−1((1, 1), (m, n)) = S([(1, 1)k−1,�, (a, 1)�], [(m, n)k])

S([(1, 1)k−1,�], [(m, n)k−1] .

Now, for each k, the only contribution to S([(1, 1)k−1,�], [(m, n)k−1]) is from k − 1 paths moving
straight across from (i, n − i + 1) to (m, n − i + 1) for i = 1, . . . , k − 1, as no other valid paths exist;
see Figure 5. For analogous reasons, S([(1, 1)k−1,�, (a, 1)�], [(m, n)k]) is given by the path weights of
k − 1 paths moving straight across from (i, n − i + 1) to (m, n − i + 1) for i = 1, . . . , k − 1 multiplied

18



by the partition function of a single polymer from (a, 1)� to (m, n − k + 1). Thus, the dependence
on the top k − 1 lines of S factors out in both the numerator and denominator and is identical in
the two. As a result, this dependence gets cancelled. This yields that

T ([(1, 1)k−1, (a, 1)], [(m, n)k])
Tk−1((1, 1), (m, n)) = S

(
[(a, 1)�], [(m, n − k + 1)]

)
.

Similarly, this time using Proposition 2.8 after a rotation to handle partition functions in the right
line ensemble alone,

T ([(1, 1)k], [(m, n)k−1, (m, b)])
Tk−1((1, 1), (m, n)) = S ([(m + 1, n − k + 1)], [(m, b)�]) .

Recall also from (2.6) that Zm,n
k (m) = Tk((1, 1), (m, n))/Tk−1((1, 1), (m, n)). Substituting this

equality along with the previous two displays into the first expression (2.19) from Lemma 2.13 yields
that

T1((a, 1), (m, b))

=
min{a,n−b+1}∑

k=1
S
(
[(a, 1)�], [(m, n − k + 1)]

) · Zm,n
k (m)−1 · S ([(m + 1, n − k + 1)], [(m, b)�]) .

Recalling from (2.13) that Y(m+ 1
2 ,n−k+1) = Zm,n

k (m)−1, by Remark 2.9, we see that the previous
display is precisely the partition function S ([(a, 1)�], [(m, b)�]) decomposed based on the index of
the line that the path cross from the left line ensemble to the right. This completes the proof. □

2.3.6. Proof of intermediate identity. Here we give the proof of Lemma 2.13.
Proof of Lemma 2.13. Take k ∈ J1, min{a, n − b + 1}K. Denote ui = (i, 1) and vi = (m, n − i + 1) for
each i ∈ J1, kK, and uk+1 = (a, 1), vk+1 = (m, n − b + 1). We consider the matrix M = (Mi,j)k+1

i,j=1,
where Mi,j = T1(ui, vj). Using Lemma 2.7, we have

T ([(1, 1)k, (a, 1)], [(m, n)k, (m, b)]) = det M.

If k < min{a, n − b + 1}, the lefthand side above is strictly positive, thus M is invertible. Now
consider T ([(1, 1)k−1, (a, 1)], [(m, n)k]). Again by Lemma 2.7, this equals a minor of M (obtained by
deleting the kth row and (k + 1)st column). Using Cramer’s rule to evaluate this minor, we obtain

T ([(1, 1)k−1, (a, 1)], [(m, n)k]) = −(M−1)k,k+1 · det M.

Similarly, we obtain
T ([(1, 1)k], [(m, n)k−1, (m, b)]) = −(M−1)k+1,k · det M,

(m, n)

(m, n − k + 1)

(a, 1)�

(1, 1)�

Figure 5. The purple paths are the only ones which contribute to S([(1, 1)k−1,�], [(m, n)]k−1)
(here, k = 3). In S([(1, 1)k−1,�, (a, 1)�], (m, n)k), the same purple paths are frozen, and there
is an additional factor of the partition function associated to the starting and ending points
(a, 1)� and (m, n − k + 1) (the weight of the depicted orange path is one contribution to it).
Thus in the ratio of the two terms the contribution of the top k − 1 frozen paths cancels.
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T ([(1, 1)k−1, (a, 1)], [(m, n)k−1, (m, b)]) = (M−1)k,k · det M,

Tk((1, 1), (m, n)) = (M−1)k+1,k+1 · det M,

Tk−1((1, 1), (m, n)) = det
(
(M−1)i,j

)k+1

i,j=k
· det M.

Expanding det
(
(M−1)i,j

)k+1
i,j=k and substituting from the remaining equations above yields

T
(
[(1, 1)k, (a, 1)], [(m, n)k, (m, b)]

)
· Tk−1((1, 1), (m, n))

= T ([(1, 1)k−1, (a, 1)], [(m, n)k−1, (m, b)]) · Tk((1, 1), (m, n))
− T ([(1, 1)k−1, (a, 1)], [(m, n)k]) · T ([(1, 1)k], [(m, n)k−1, (m, b)]);

this is also an instance of the Desnanot-Jacobi identity (which we have essentially reproved above)
applied to M . By rearranging the terms we get

T ([(1, 1)k−1, (a, 1)], [(m, n)k]) · T ([(1, 1)k], [(m, n)k−1, (m, b)])
Tk((1, 1), (m, n)) · Tk−1((1, 1), (m, n))

= T ([(1, 1)k−1, (a, 1)], [(m, n)k−1, (m, b)])
Tk−1((1, 1), (m, n)) − T ([(1, 1)k, (a, 1)], [(m, n)k, (m, b)])

Tk((1, 1), (m, n)) . (2.21)

If k = min{a, n − b + 1}, the second term in the right-hand side equals zero, as (1, 1)k overlaps with
(a, 1) or (m, n)k overlaps with (m, b), so there is no space for the paths to be disjoint. Next, for
the first term, either [(1, 1)k−1, (a, 1)] = [(1, 1)k] or [(m, n)k−1, (m, b)] = [(m, n)k]; in either case the
lefthand side equals the first term on the righthand side. Thus (2.21) still holds.

Finally, by summing over k ∈ J1, min{a, n − b + 1}K, or k ∈ Jj, min{a, n − b + 1}K, we get (2.19)
or (2.20), respectively (recalling that the second term on the righthand side in (2.21) is zero when
k = min{a, n − b + 1}). □

In the remainder of Section 2 we return to working with the log-gamma polymer model rather
than a general polymer model.

2.4. Density formulas for the log-gamma polymer. Recall the definitions of the index sets
J [m, n], J1[m, n], and J2[m, n] from (2.7) and of Zm,n

j from (2.8) and (2.9). In this subsection and
the next, these quantities are associated with the case where the underlying i.i.d. noise is given by
inverse-gamma(θ) random variables (recall (2.1)).

As mentioned, the log-gamma model is an integrable polymer model. Here, this means that we
have explicit formulas for the joint distribution of a family of partition functions. We state this
next, which is a consequence of results from [COSZ14]. It will be proved just below.

Lemma 2.15. The joint probability density of {Zm,n
j (i)}(i,j)∈J [m,n] at {zj(i)}(i,j)∈J [m,n] equals

1
Zm,n

exp
(

−
∑

(i,j)∈J [m,n];i≤m−1

zj(i)
zj(i + 1) −

∑
(i,j)∈J [m,n];i≤m−1;j≤n−1

zj+1(i + 1)
zj(i)

)

× exp
(

−
∑

(i,j)∈J [m,n];i≥m+2

zj(i)
zj(i − 1) −

∑
(i,j)∈J [m,n];i≥m+2;j≤n−1

zj+1(i − 1)
zj(i)

)

×
∏

(i,j)∈J [m,n]
zj(i)−1

min{m,n}∏
j=1

zj(m)−θ,

(2.22)

under the constraint zj(m) = zj(m + 1) for j ∈ J1, min(m, n)K, where Zm,n is the renormalization
constant.

20



Before giving the proof of Lemma 2.15, we make a simple but important observation about the
explicit density function given in (2.22), thus relating the law of {Zm,n

j (i)}(i,j)∈J [m,n] with that of
{Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1].
We first note that J [m − 1, n − 1] is naturally embedded inside J [m, n] \ {(i, j) ∈ J [m, n] : j = 1}

and that therefore we can separate out the terms corresponding to entries of J [m − 1, n − 1] in (2.22)
to see the relation between the laws of {Zm,n

j (i)}(i,j)∈J [m,n] and {Zm,n
j (i)}(i,j)∈J [m−1,n−1]. This also

allows us to do so after conditioning on the values of Zm,n
1 (·).

For integers m, n ≥ 2 and any g : J1, m + nK → R, we define Γg : RJ [m−1,n−1]
+ → R+ as

Γg({zj(i)}(i,j)∈J [m−1,n−1]) := 1
Z̃m,n,g

exp
(

−
m−1∑
i=1

z1(i)
g(i) −

m+n−2∑
i=m

z1(i)
g(i + 2)

)
, (2.23)

where Z̃m,n,g is taken such that E
[
Γg({Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1])
]

= 1.
Performing the separation of the terms corresponding to J [m − 1, n − 1] after conditioning on the

values of Zm,n
1 (·) leads to the following statement, whose proof is by inspection and omitted.

Corollary 2.16. For g : J1, m + nK → R such that g(m) = g(m + 1), the law of {Zm,n
j+1 (i +

1)}(i,j)∈J [m−1,n−1], conditional on Zm,n
1 (·) = g, equals the (unconditioned) law of {Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1]
reweighted by Γg({Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1]).

Proof of Lemma 2.15. Denote Ẑm,n
j (i) = Zm,n

j (i) = Zj((1, 1), (i, n)) for each (i, j) ∈ J1[m, n], and
Ẑm,n

j (i) = Zj((1, 1), (m, m + n + 1 − i)) for each (i, j) ∈ J2[m, n]. Note that Ẑm,n
j (m) = Ẑm,n

j (m + 1)
for each j ∈ J1, min(m, n)K, just as is the case for Zm,n

j .
We claim that the joint probability density of {Ẑm,n

j (i)}(i,j)∈J [m,n] at {zj(i)}(i,j)∈J [m,n] equals
(2.22). Indeed, according to [COSZ14, Proposition 2.5], {Ẑm,n

j (i)}(i,j)∈J [m,n] can also be obtained
via a row/column insertion procedure. Such procedure gives a Markovian structure, as stated in
[COSZ14, Theorem 3.7]. Further, [COSZ14, Proposition 5.3] guarantees that a certain limit of this
Markovian object under a specific sequence of initial conditions coincides with {Ẑm,n

j (i)}(i,j)∈J [m,n].
With these facts, the claim follows by repeatedly applying the Markovian structure in [COSZ14,

Theorem 3.7(i)], using [COSZ14, Theorem 3.7(ii)], and then taking the limit from [COSZ14, Propo-
sition 5.3].

Finally, by a form of shift-invariance [Dau22, Theorems 1.2 and 1.10], it quickly follows that
{Zm,n

j (i)}(i,j)∈J [m,n] has the same distribution as {Ẑm,n
j (i)}(i,j)∈J [m,n]. In more detail, for each i,

shift invariance allows us to shift down the endpoints (1, i) and (m, n) of the partition function
Zm,n

j (m + i) to instead be (1, 1) and (m, n − i + 1), without changing the overall joint distribution,
i.e., {Zm,n

j (i)}(i,j)∈J [m,n] has the same distribution before and after the shifts. Pictorially, we shift
all the blue paths in the right panel of Figure 3 down so that the left endpoint is (1, 1). Thus the
conclusion follows. □

2.5. BK inequality for log-gamma polymers. In this section we give the proof of Theorem 2.1.
We start with a negative association statement. To state it, recall the definition of Γg from (2.23).

Lemma 2.17. Let A be an increasing event of {T1((a, 1), (m − 1, b))}a∈J1,m−1K,b∈J1,n−1K. For any
g : J1, m + n − 1K → R+, the random variable

Γg

(
{Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1]
)

(2.24)

and A are negatively associated; i.e., (2.24) conditional on A is stochastically dominated by (uncon-
ditioned) (2.24).
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Proof. Consider both Γg

(
{Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1]
)

and 1[A] as functions of the i.i.d. random
variables {Xi,j}i∈J1,m−1K,j∈J1,n−1K. Since T1(u, v) is increasing in {Xi,j}i∈J1,m−1K,j∈J1,n−1K, for any
u ≤ v in each coordinate, we have that Γg

(
{Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1]
)

is a decreasing function
(recall (2.23)) and 1[A] is an increasing function. Therefore the conclusion follows from the FKG
inequality. □

Proof of Theorem 2.1. It suffices to show that, for any g : J1, m+n−1K → R+ such that g|J1,mK = f ,

P
({

T ([(1, 1), (a, 1)], [(m, n), (m, b)])
T1((1, 1), (m, n))

}
a∈J2,mK,b∈J1,n−1K

∈ A
∣∣∣ Zm,n

1 = g

)
≤ P

(
{T1((a − 1, 1), (m − 1, b))}a∈J2,mK,b∈J1,n−1K ∈ A

)
. (2.25)

By Corollary 2.11, the left-hand side can be written as

P
({

F m−1,n−1
a−1,b ({Zm,n

j+1 (i + 1)}(i,j)∈J [m−1,n−1])
}

a∈J2,mK,b∈J1,n−1K ∈ A
∣∣∣ Zm,n

1 = g

)
.

By Corollary 2.16, this further equals

E
(
1

{{
F m−1,n−1

a−1,b ({Zm−1,n−1
j (i)}(i,j)∈J [m−1,n−1])

}
a∈J2,mK,b∈J1,n−1K ∈ A

}
× Γg({Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1])
)

,

Note that by Corollary 2.11 again, this is

E
(
1
{

{T1((a − 1, 1), (m − 1, b))}a∈J2,mK,b∈J1,n−1K ∈ A
}

Γg({Zm−1,n−1
j (i)}(i,j)∈J [m−1,n−1])

)
.

By Lemma 2.17, the previous display is upper bounded by the right-hand side of (2.25) (also using
that E[Γg({Zm−1,n−1

j (i)}(i,j)∈J [m−1,n−1])] = 1). Thus, the conclusion follows. □

3. Inputs and tools for continuum objects

Having established a form of the BK inequality for disjoint polymers in Theorem 2.1, our next task
is to take the continuum limit to establish Theorem 1.5. In this section we collect some properties
of the continuum objects that will be useful, and we give the proof of Theorem 1.5 (as well as
of Theorems 1.3 and 1.4) in Section 4. We start by stating some distributional symmetries of Z,
namely shift, shear, and reflection invariances.

Lemma 3.1 (Theorem 3.1, [AKQ14a] or Proposition 2.3, [AJRAS22]). Z has the same distribution
as

(1) (Shift and shear) (x, s; y, t) 7→ Z(x+νs+α, s +η; y +νt+α, t +η) exp(ν2(t−s) + 2ν(y −x)),
for any ν, α, η ∈ R; and

(2) (Reflection) (x, s; y, t) 7→ Z(−x, s; −y, t), and (x, s; y, t) 7→ Z(y, −t; x, −s).
Further, for any disjoint time intervals {(si, ti)}k

i=1, the functions Z(·, si; ·, ti) are independent. Also,
with probability one Z(x, s; y, t) > 0 for all x, y ∈ R and 0 < s < t. Finally, (1) and (2) also hold
for K by (1.5).
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3.1. Properties of multi-point partition functions. Next we turn to a rescaled version Mn of
the multi-layer partition function Kn from (1.5).

The rescaling to go from Kn to Mn is by the Vandermonde determinants of the endpoints, and
can be regarded as an entropy factor; this is necessary to relate Kn to Zn (as in (1.4)), where all
the endpoints are equal. We define Mn : {(x, s; y; t) : x, y ∈ Λ̊n, s, t ∈ R, s < t} → R by

Mn(x, s; y, t) := Kn(x, s; y, t)
∆(x)∆(y) = det[Z(xi, s; yj , t)]ki,j=1∆(x)−1∆(y)−1 (3.1)

where ∆(x) = ∏
i<j(xi − xj).

3.1.1. Positivity and implications. Using the Karlin-McGregor theorem, it is straightforward to
deduce that M is non-negative, as shown in [OW16, Proposition 5.5]. The simultaneous strict
inequality is proved in [LW20, Theorem 1.4], and also in [AJRAS22, Theorem 2.17] with a different
method.

Lemma 3.2. Almost surely, for any s < t, n ∈ N, and x, y ∈ Λ̊n, it holds that Mn(x, s; y, t) > 0.

The k = 2 case of Lemma 3.2 will be useful later, and we write it out explicitly: for any s < t,
x1 < x2, and y1 < y2,

Z(x1, s; y1, t)Z(x2, s; y2, t) > Z(x1, s; y2, t)Z(x2, s; y1, t). (3.2)

This is a positive temperature analog of the quadrangle inequality in zero temperature (see e.g.,
[DOV22, BGH21]).

This positivity yields an inequality relating K2 and Z which will be useful later. Here and in the
remainder of the paper we adopt a slightly different notation for K2 than in Section 1, namely, we
write K2([(x1, s), (x2, s)]; [(y1, t), (y2, t)]) rather than K2((x1, x2), s; (y1, y2), t). This is in order to be
more consistent with the notation from Section 2 and as it is slightly clearer when dealing with just
two points.

Lemma 3.3. The following holds almost surely. For any x1 ≤ x2, y1 ≤ y2 ≤ y3, and s < t,

K2([(x1, s), (x2, s)]; [(y1, t), (y2, t)])
Z(x2, s; y2, t) <

K2([(x1, s), (x2, s)]; [(y1, t), (y3, t)])
Z(x2, s; y3, t)

and

K2([(x1, s), (x2, s)]; [(y2, t), (y3, t)])
Z(x1, s; y2, t) <

K2([(x1, s), (x2, s)]; [(y1, t), (y3, t)])
Z(x1, s; y1, t) .

Proof. We give the proof for the first inequality as the second is analogous. Using (1.5), expanding,
and rearranging, we must show that(

Z(x1, s; y1, t)Z(x2, s; y2, t) − Z(x1, s; y2, t)Z(x2, s; y1, t)
)
Z(x2, s; y3, t)

<
(
Z(x1, s; y1, t)Z(x2, s; y3, t) − Z(x1, s; y3, t)Z(x2, s; y1, t)

)
Z(x2, s; y2, t).

Cancelling and rearranging, this is equivalent to

Z(x1, s; y2, t)Z(x3, s; y3, t) − Z(x1, s; y3, t)Z(x2, s; y2, t) > 0.

This is precisely (3.2). □
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3.1.2. Continuous extension. Next we state the formal relation of Mn and the multi-layer partition
function Zn (recall (1.4)), through the following extension of Mn to the boundary of Λn × Λn.
Though we do not use this fact directly anywhere in the paper, we state it for completeness and as
it is used in the proofs of other facts we invoke (such as Lemma 3.6 ahead).

Lemma 3.4 ([LW20, Theorem 1.3]). For any s < t and n ∈ N, the function (x, y) 7→ Mn(x, s; y, t)
(where x, y ∈ Λ̊n) almost surely extends continuously to Λn × Λn, and the extension satisfies

2−n(n−1)/2(t − s)n(n−1)/2
(

n−1∏
i=1

i!
)

Mn(x1, s; y1, t) = Zn(x, s; y, t),

where 1 is the vector in Rn where each entry equals 1.

Remark 3.5. As in Remark 2.6, we recall that Z2 is not simply the continuum analog of Z2, but
rather is the partition function of two disjoint paths in the continuum.

The following lemma relates Z2 with K2 and is a quick consequence of [LW16, Proposition 3.2].
It will be used to move from Theorem 1.5 to Theorem 1.3, for which one needs to quantiatively
approximate ht,2 (which is in turn defined in terms of Z2/Z1 due to (1.6)) by K2.

Lemma 3.6. The following holds almost surely. For any real numbers s < t, a < b, and c < d,

log
(

1 + K2([(a, s), (b, s)]; [(c, t), (d, t)])
Z1((a, s); (d, t))Z1((b, s); (c, t))

)
=
∫ b

a

∫ d

c

Z2((x, s); (y, t))
Z1((x, s); (y, t))2 dy dx. (3.3)

One can thus move from Z2 to K2, for example, by take a to be very close to b and c very close to
d, on a scale say polynomial in M−1 for a large parameter M . The resulting entropy contribution
coming from the integral on the righthand side of (3.3) will result in a shift of C log M . This is the
source of the same shift in Theorem 1.3, and the small probability of the event where Z1 or Z2
fluctuate too much on [a, b] or [c, d] produces the exp(−cM2) error there, as we will see in Section 4.

Proof of Lemma 3.6. [LW16, Proposition 3.2] is a deterministic statement, which, in the n = 1 case
and applied to the process M, yields

log
(Z1((a, s); (c, t))Z1((b, s); (d, t))

Z1((a, s); (d, t))Z1((b, s); (c, t))

)
=
∫ b

a

∫ d

c

Z2((x, s); (y, t))
Z1((x, s); (y, t))2 dy dx;

here we have implicitly used the identity relating M2 with Z2 (Lemma 3.4). Rewriting the lefthand
side using (1.5) completes the proof. □

Remark 3.7. The lefthand side of (3.3) can be regarded as a positive temperature version of the
“difference profile” [BGH21, GH23, GZ22, Dau23], while the righthand side can be regarded as a
positive temperature analogue of the shock measure [BGH22]. These two objects have been related
at the zero temperature level in a number of works such as [BGH22].

3.2. Line ensemble facts. Here we collect a few statements on the KPZ line ensemble. First is a
certain stochastic monotonicity property. The finite case is just [GH22, Theorem 2.7], while the
interval case is a quick consequence of the finite case that we prove in Appendix A.

Lemma 3.8 (Monotonicity in conditioning). Let D ⊂ R be an interval or a finite set of points. In
the case that D is an interval, there exists a set Ω ⊆ C(D,R) which has probability 1 under the law
of a rate 2 Brownian motion on D with standard normal starting point, and in the case D is finite,
we may take Ω = RD, such that the following holds.

If f, g ∈ Ω with f(x) ≥ g(x) for all x ∈ D, then the conditional law of ht given ht,1|D = f
stochastically dominates the same given ht,1|D = g.
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Next is a lower bound on the upper tail. We state it in terms of the scaled version ĥt,1 and ĥt,2
as defined in (1.7). The proof in the case that t is bounded away from zero was given in [GH22],
and the case where t is arbitrarily small was outlined in [GHZ23, Appendix C]. The proofs are
reproduced in Appendix A for completeness.

Proposition 3.9 (Lower bound on one-point upper tail). There exists L0 such that, for all t, L > 0
such that L > (t−1/6 ∨ 1)L0,

P
(
ĥt,1(0) > L

)
≥ exp(−5L3/2).

3.3. Regularity estimates. Here we collect some estimates on the regularity of the curves ht,j of
the KPZ line ensemble as well as of the KPZ sheet. Since their proofs are immediate consequences
of existing estimates, we defer them to Appendix A. We start by recalling the definition of the KPZ
sheet.

Recall the solution to the stochastic heat equation (1.2) (x, s; y, t) 7→ Z(x, s; y, t). We define the
KPZ sheet to be the random continuous function h : R4� → R given by

h(x, s; y, t) := log Z(x, s; y, t) + t − s

12 ;

the righthand side is almost surely positive for all (x, s; y, t) ∈ R4� simultaneously by [AJRAS22,
Theorem 2.2], so h is well-defined.

Lemma 3.10. There exist C, c > 0 such that, for all j ∈ N, x, y ∈ R, t > 0, and K ≥ 0,

P
(

sup
x,y∈[0,K],|x−y|≤ε

|ĥt,j(x) − ĥt,j(y) + x2 − y2| ≥ Mε1/2(log ε−1)1/2
)

≤ C(K + 1) exp(−cM2).

Lemma 3.11. There exist C, c > 0 such that for any t > 0, ε > 0, K ≥ 0, and M > 0,

P

 sup
|x1|,|x2|,|y1|,|y2|≤K
∥(x1,y1)−(x2,y2)∥≤ε

|h(x1, 0; y1, t) − h(x2, 0; y2, t)| ≥ Mε1/2(log ε−1)1/2

 ≤ C(K + 1)2 exp(−cM2).

4. From log-gamma polymers to the KPZ equation

In this section we use Theorem 2.1 to give the proofs of Theorems 1.3, 1.4, and 1.5. For
Theorem 1.5 we essentially just need to take the scaling limit of the log-gamma partition function
to the CDRP partition function, for which we start by setting up the scalings in the next section.
Then we prove Theorem 1.5 in Section 4.2 and Theorems 1.3 and 1.4 in Section 4.3.

4.1. Scalings for log gamma. Recall from Section 2.1 that θ is the parameter associated to the
inverse-gamma distribution. For a scaling parameter n, we set θ = 2n1/2 and, for u, v ∈ Z2 which
are ordered u ≤ v component-wise, let Zn

1 (u, v) be the partition function as defined in (2.6) with
this value of θ. Recall R4� from Section 1.3.1. Let Zn be defined by

Zn(x, s; y, t) = Zn
1
(
ns + 2n1/2x, ns; nt + 2n1/2y, nt

)
· n1/2 ·

(
2−1(2n1/2 − 1)

)2n(t−s)+2n1/2(y−x)

(4.1)

for all (x, s; y, t) ∈ R4
↑ such that the arguments of Zn

1 are all integers; for all other (x, s; y, t) ∈ R4
↑,

we extend the definition by linear interpolation.
The following lemma was essentially proven in [AKQ14b], and a similar statement was given in

[Wu23c, Proposition 5.10], so we will only outline its proof.

Lemma 4.1. Zn → Z weakly in the topology of uniform convergence on compact sets of R4
↑ as

n → ∞.
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Proof outline. [AKQ14b, Theorem 2.7] asserts the desired convergence for the full space-time field
in a general polymer model where the vertex weight distributions have mean zero and variance
one, which is not the case for the (rescaled) inverse gamma random variables we have. [Wu23c,
Proposition 5.10] obtains the same statement for the marginal where x = s = 0 in the case of
rescaled inverse gamma random variables by observing that the argument of [AKQ14b] also holds if
the variance converges to 1 appropriately quickly (as n → ∞). This observation does not rely on
x = s = 0 and so the same observation applied to the full convergence result of [AKQ14b, Theorem
2.7] gives our result. □

Next we define the object which will converge to K2 (recall its definition from (1.5)). First, let

R6
�,≤ :=

{
(x1, x2, s; y1, y2, t) : t > s ≥ 0; (x1, x2), (y1, y2) ∈ Λ2

}
.

Define Kn
2 : R6

�,≤ → R by
Kn

2 ([(x1, s), (x2, s)]; [(y1, t), (y2, t)])

= T
(
[(ns + 2n1/2x1, ns), (ns + 2n1/2x2, ns)]; [(nt + 2n1/2y1, nt), (nt + 2n1/2y2, nt − 1)]

)
× n × (2−1(2n1/2 − 1))4n(t−s)−1+2n1/2(y1+y2−x1−x2)

(4.2)

for all (x1, x2, y1, y2, s, t) such that t ≥ s + 1
n and all the arguments of T are integers, and for all

other (x1, x2, y1, y2, s, t) in the domain by linear interpolation.
Here we use nt − 1 in the second coordinate instead of nt as in the first so as to match what

appears in Corollary 2.3. It is because of this extra −1 term that the constant rescaling factor
in (4.2) (i.e., the final line) contains an extra −1 in the exponent compared to the square of the
analogous rescaling factor in (4.1), as can be seen by performing the substitutions t 7→ t − 1

n and
y 7→ y + 1

2n1/2 in (4.1). An important point is that the fluctuations of the quantity in the first
line of (4.2) after replacing nt − 1 by nt differs by a 1 + o(1) factor, modulo the just mentioned
deterministic modification in the scaling. Thus, as we see next, in the limit the distinction is not
present.

In the following we regard Kn
2 as a continuous function defined on all of R6

�,≤ by embedding the
above definition and extending to the remainder of the domain in an arbitrary manner that respects
continuity.

Lemma 4.2. As n → ∞, in the topology of uniform convergence on compact sets of R4� × R6
�,≤,

(Zn, Kn
2 ) d→ (Z, K2).

Proof. Since K2 and Kn
2 are the same continuous function of Z and Zn by (1.5) and Lemma 2.7,

respectively, it suffices to prove that both the marginals of (Zn, Kn
2 ) converge to the correct limits.

That Zn d→ Z is Lemma 4.1. So we turn to the convergence of Kn
2 .

First, by Lemma 2.7, we can express Kn
2 as a determinant of a matrix whose entries are given

by Zn
1 evaluated at the appropriate points. By the joint convergence of Zn

1 after rescaling to Z
as given in Lemma 4.1, we obtain that the limit as n → ∞ of this determinant is exactly the one
appearing in the definition (1.5) of K2 as a determinant of Z (note that the required rescaling for
the factors of Z1(ns + 2n1/2xi, ns; nt + 2n1/2y, nt − 1) matches what is present by the discussion
after (4.2)). This completes the proof. □

4.2. Proof of the limiting BK inequality for disjoint polymers in the CDRP. Here we
give the proof of Theorem 1.5. We start with two basic but useful facts about weak convergence.

Lemma 4.3. Let S be a metric space with Borel σ-algebra S. Let X1, X2, . . . and X be random
elements taking values in S with Xn

d→X. Let E ∈ S be a continuity set for X, i.e., P(X ∈ ∂E) = 0,
where ∂E = Ē \ E◦ is its topological boundary, and suppose P(X ∈ E) > 0. Then Xn conditioned on
Xn ∈ E converges in distribution to X conditioned on X ∈ E.
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Proof. It suffices to show that, for any bounded continuous function f : S → R, as n → ∞,
E[f(Xn) | Xn ∈ E] → E[f(X) | X ∈ E]. Write E[f(Xn) | Xn ∈ E] = E[f(Xn)1Xn∈E]/P(Xn ∈ E).
Then what we must show follows from the Portmanteau and continuous mapping theorems since
E is a continuity set for X. First, the Portmanteau theorem implies P(Xn ∈ E) → P(X ∈ E), and,
since x 7→ f(x)1x∈E is almost surely continuous at X, the continuous mapping theorem implies
E[f(Xn)1Xn∈E] → E[f(X)1X∈E]. □

Proof of Theorem 1.5. Recall we wish to bound the conditional probability

P
(
log K2((x1, x2), s; (y1, ·), t)|[y1,y1+K] − log Z(x1, s; y1, t) ∈ A | log Z(x1, s; ·, t)|[y1−R,y1]

)
. (4.3)

(The case where +K and −R are simultaneously replaced by −K and +R is immediate after recalling
the distributional symmetry of the processes under reflection around the origin, Lemma 3.1.) By
spatial and temporal translation invariance (Lemma 3.1) of Z and K2, it suffices to prove the case
x1 = s = 0. By shear invariance of K2 and Z (again Lemma 3.1), it further suffices to take y1 = 0.

Let {Um} be an increasing sequence of finite sets, i.e., U1 ⊂ U2 ⊂ . . . such that ∪∞
m=1Um is dense

in [−R, 0]. Note that if we consider the conditional probability above in (4.3) but conditioned on
log Z(0, 0; ·, t)|Un rather than log Z(0, 0; ·, t)|[−R,0], then this sequence of conditional probabilities
forms a martingale (in n) whose limit is (4.3) (due to the denseness assumption on {Un} and the
continuity of Z). So it suffices to prove the desired bound on the conditional probability conditioned
on the values of log Z(0, 0; ·, t) on a finite set; this is useful as we can avoid technicalities regarding
the convergence of probabilities conditioned on equaling a given element in the space of continuous
functions and instead work in finite-dimensional settings.

Now we turn to prove the desired bound when conditioned on the values of log Z(x1, s; ·, t) on a
finite set U ⊂ [−R, 0]. Let g : U → R. For any ε ∈ (0, ∞] fixed, let µε

n be the law of
Kn

2 ([(0, 0), (x2, 0)]; [(0, t), (·, t − 1
n)])|[0,K]

Zn(0, 0; 0, t)
conditioned on Zn(0, 0; ·, t)|U ∈

∏
x∈U

[g(x), g(x) + ε]

and νn be the law of Zn(x2, 0; ·, t − 1
n). Let µε be the law of

K2([(0, 0), (x2, 0)]; [(0, t), (·, t)])|[0,K]
Z(0, 0; 0, t) conditioned on Z(0, 0; ·, t)|U ∈

∏
x∈U

[g(x), g(x) + ε],

and ν be the law of Z(x2, 0; ·, t).
Next we wish to take the weak limit as n → ∞ and make use of Lemma 4.3, whose assumptions

we now verify. First, by Lemma 4.2 we know that (Zn, Kn
2 ) d→ (Z, K2). Second, Z and K2 are

atomless (the latter following from the former by the definition (1.5)) and Z(0, 0; ·, t)|U has full
support, which follows from the Brownian Gibbs property of the KPZ line ensemble (see Section A.1
or [CH16]) or by [CHN21, Theorem 1.2]. So Lemma 4.3 yields that, as n → ∞,

µε
n

d→ µε and νn
d→ ν. (4.4)

Now we wish to apply Corollary 2.3. We make substitutions for the coordinates and quantities
appearing in that statement so as to put things in the correct scaling. First, replace a by 2n1/2x2, b
by nt, and b′ by nt + 2n1/2y2. Next, we replace x 7→ f(x) by x 7→ g(x)n1/2(2−1(2n1/2 − 1))2nt. Now,
Corollary 2.3 and the definition (4.2) of Kn

2 yield that there exists a coupling of Xε
n(·) ∼ µε

n and
Yn(·) ∼ νn such that, almost surely, for all x ∈ [0, K],

Xε
n(x) ≤ Yn(x).

Combining (4.4) with the previous display, the Skorohod representation theorem yields a coupling
of Xε(·) ∼ µε and Y (·) ∼ ν such that Xε(x) ≤ Y (x) for all x ∈ [0, K].
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Setting g(x) = ef(x) for all x ∈ U , the coupling yields, with ε′
x = log(1 + εe−f(x)) for all x ∈ U

and for any increasing Borel measurable set A, that

P
( (

log K([(0, 0)(x2, 0)]; [(0, t), (·, t)])|[0,K]

− log Z(0, 0; 0, t)
) ∈ A

∣∣∣∣ log Z(0, 0; ·, t)|U ∈
∏
x∈U

[f(x), f(x) + ε′
x]
)

≤ P
(
log Z(x2, 0; ·, t)|[0,K] ∈ A

)
.

Taking ε → 0 and using the Portmanteau theorem completes the proof in the case of conditioning on
log Z(0, 0; ·, t) = f . Since the righthand side has no dependence on f , averaging the inequality over
the conditioning variable yields the same inequality when conditioned on log Z(0, 0; ·, t) ≥ f . □

4.3. Proof of BK inequality for the KPZ line ensemble. Here we give the proofs of Theo-
rems 1.3 and 1.4. We will need a way to move between ht,2 (equivalently, Z2) and K2, since we
intend to use the analogous BK inequality statement we have already proven for K2 (Theorem 1.5).
This is provided by the next lemma.

Lemma 4.4. Let K > 0. There exist C, c > 0 such that, for ε > 0, s < t, x ∈ R, and
1 ≤ λ ≤ ε−1/2(log ε−1)−1/2, the following holds. With probability at least 1 − 3K exp(−cλ2), for all
|y| ≤ K,

Z2 ((x, s); (y, t)) ≤ ε−2(1 + Cλε1/2(log ε−1)1/2) · K2 ([(x, s), (x + ε, s)]; [(y, t), (y + ε, t)]) .

For any fixed y ∈ R, the same holds with probability at least 1 − C exp(−cλ2).

Here, as we will see, the ε−2 comes from evaluating the integral in Lemma 3.6 over a pair of ε-sized
neighborhoods, and the ε1/2(log ε−1)1/2 term and error probability bound come from Brownian
modulus of continuity estimates for Z1 and Z2.

Proof of Lemma 4.4. By spatial and temporal translation invariance we may assume x = s = 0.
Now by (1.6), for any w ∈ R,

log Z2 ((0, 0); (w, t)) = ht,1(w) + ht,2(w) − t/6.

Then Lemma 3.10 applied to ht,1 and ht,2 separately, along with the triangle inequality, yields
that, on an event with probability at least 1 − K exp(−cλ2), for all |y| ≤ K and all w ∈ [y, y + ε],
| log Z2 ((0, 0); (w, t)) − log Z2 ((0, 0); (y, t)) | ≤ λε1/2(log ε−1)1/2, which implies

Z2 ((0, 0); (w, t)) ≤ Z2 ((0, 0); (y, t)) (1 + CRε1/2(log ε−1)1/2) (4.5)

for all such w. Similarly we also have that on an event of probability at least 1 − K exp(−cλ2), for
all |y| ≤ K and w ∈ [y, y + ε],

Z1 ((0, 0); (w, t))
Z1 ((0, 0); (y, t)) ∈ [1 − Cλε1/2(log ε−1)1/2, 1 + Cλε1/2(log ε−1)1/2], (4.6)

and, by Lemma 3.11, the same also holds with (0, 0) in the numerator replaced by (ε, 0).
Now we apply Lemma 3.6 with a = 0, b = ε, c = y, d = y + ε and use log(1 + w) < w for w > 0

to obtain that, deterministically,∫ ε

0

∫ y+ε

y

Z2((w, 0); (z, t))
Z1((w, 0); (z, t))2 dz dw ≤ K2([(0, 0), (ε, 0)]; [(y, t), (y + ε, t)])

Z1((0, 0); (y + ε, t))Z1((ε, 0); (y, t)) .

Applying the estimates (4.5) and (4.6) to the previous display yields that, on an event of probability
at least 1 − 3K exp(−cλ2), for all |y| ≤ K,

ε2 Z2((0, 0); (y, t))
Z1((0, 0); (y, t))2 · (1 − Cλε1/2(log ε−1)1/2)

(1 + Cλε1/2(log ε−1)1/2)
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≤ K2([(0, 0), (ε, 0)]; [(y, t), (y + ε, t)])
Z1((0, 0); (y, t))2 · (1 + Cλε1/2(log ε−1)1/2).

Rearranging, cancelling common terms, and relabeling C completes the proof in the case of
controlling simultaneously over all y ∈ [0, K]. In the case of a fixed y ∈ R, we use the stationarity
of w 7→ Z2((0, 0), (w, t)) and Lemma 3.10 with K = 1 to obtain (4.5) and (4.6) at w = y with
probability at least 1 − C exp(−cλ2). This completes the proof. □

Now we may turn to giving the proofs of Theorems 1.3 and 1.4. For the convenience of the reader,
we restate Theorem 1.4 below.

Theorem 1.4. There exist C, c > 0 such that the following holds. Let y ∈ R, K, R ≥ 0, and
A ⊆ C([0, K],R) be an increasing Borel measurable set. For any t > 0, M > 0, and a.e. f ∈
C([y − R, y],R),

P
(
ĥt,2|[y,y+K] − Ct−1/3 log M ∈ A

∣∣∣ ĥt,1|[y−R,y] = f
)

≤ P
(
ĥt,1|[y,y+K] ∈ A

)
+ 3(K + 1)t2/3 exp(−cM2)

P(ĥt,1|[y−R,y] ≥ f)
.

(1.8)

The same also holds when the conditioning is replaced by ĥt,1|[y−R,y] ≥ f , in which case we may relax
the continuity assumption and allow any f : [y − R, y] → R ∪ {−∞} which is upper semicontinuous.

All of the previous also hold under both conditionings when +K is replaced by −K and −R by
+R simultaneously.

The shift by Ct−1/3 log M in (1.8) will arise in the proof from an invocation of Lemma 4.4 (with
the parameters set as functions of M) to move from Z2 to K2, and this is also the source of the
exp(−cM2) in the error term.

Remark 4.5. Observe that, by taking M = M ′t, for M ′ a constant depending on f , Theorem 1.4
yields

P
(
ĥt,2|[y,y+K] − Ct−1/3 log(M ′t) ∈ A

∣∣∣ ĥt,1|[y−R,y] = f
)

≤ P
(
ĥt,1|[y,y+K] ∈ A

)
+ CKt2/3 exp(−c(M ′)2t2).

In particular, as t → ∞, one obtains the zero temperature version of the same inequality, i.e., for the
parabolic Airy line ensemble [GH22, Theorem 2.7], using the convergence of the KPZ line ensemble
to the parabolic Airy line ensemble (which follows from combining the main results of [Wu23a] and
[AH23]). This is also an immediate consequence of the full BK inequality as proven in [GH22].

Proof of Theorem 1.3 (assuming Theorem 1.4). This follows immediately after taking R = 0 and
f(y) = L in Theorem 1.4, and recalling that P(ĥt,1(y) ≥ L) = P(ĥt,1(0) ≥ L + y2) ≥ exp(−c(L +
y2)3/2) if L > L0t−1/6 from Proposition 3.9. Since M > C(L + y2)3/4 for a large enough constant C
is assumed, it follows that

C(K + 1)t2/3 exp(−cM2)
P(ĥt,1(y) ≥ L)

≤ C(K + 1)t2/3 exp(−cM2)

(indeed, as mentioned after Theorem 1.3, this lower bound on M was assumed precisely for the
above inequality to hold). This completes the proof. □

Proof of Theorem 1.4. First, by stationarity of w 7→ ĥt,i(w) + w2 jointly across i (see, e.g., [Nic21,
Proposition 1.3]), we may assume without loss of generality that y = 0 (without modifying the
values of C and c, as can be seen by inspecting (1.8)).

Next, it suffices to prove (1.8) in the case of y + · rather than y − ·. This is because (since we have
reduced to y = 0) w 7→ Zi ((0, 0); (w, t)) has the same distribution as w 7→ Zi ((0, 0); (−w, t)) for
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i = 1 and 2 jointly (which follows immediately from the definition in terms of the chaos expansions
and the analogous symmetry of the underlying white noise).

Now, by monotonicity in conditioning (Lemma 3.8),

P
(
ĥt,2(·)|[0,K] − Ct−1/3 log M ∈ A

∣∣∣ ĥt,1|[−R,0] = f
)

≤ P
(
ĥt,2(·)|[0,K] − Ct−1/3 log M ∈ A

∣∣∣ ĥt,1|[−R,0] ≥ f
)
,

so it suffices to bound the latter quantity. We assume f : [y − R, y] → R ∪ {−∞} is upper
semicontinuous. In the remaining argument we will work under the conditioning ĥt,1|[−R,0] ≥ f .

Now, from (1.6) and (1.7) we may write ĥt,2(z) as

ĥt,2(z) = t−1/3 log
Z2
(
(0, 0); (zt2/3, t)

)
Z ((0, 0); (zt2/3, t)

) + t2/3

12 .

We apply Lemma 4.4 with ε = M−4, λ = M = ε−1/4 ≪ ε−1/2(log ε−1)−1/2, x = 0, and s = 0,
which yields that, with probability at least 1 − 3(K + 1)t2/3 exp(−cM2), for all |z| ≤ K,

log Z2((0, 0); (zt2/3, t)) ≤ C + 8 log M + log K2([(0, 0), (M−4, 0)]; [(zt2/3, t), (zt2/3 + M−4, t)])
≤ C log M + log K2([(0, 0), (M−4, 0)]; [(zt2/3, t), (zt2/3 + M−4, t)]). (4.7)

We denote the event that the previous display occurs by E , so that

P(Ec) ≤ 3(K + 1)t2/3 exp(−cM2). (4.8)

We have now related Z2 to K2. Ultimately we will need to invoke Theorem 1.5. But observe that,
taking x1 = 0, the probability appearing in that statement conditions on Z(0, 0; ·, t)|[y1−R,y1] and
considers K2([(0, 0), (x2, 0)]; [(y1, t), (·, t)])|[y1,y1+K], i.e., the x-coordinate of the first ending point in
K2 is fixed and matches the right endpoint of the interval on which Z is being conditioned. However,
note that the x-coordinate of the first endpoint in the K2 term in (4.7) is not fixed.

To address this, we next apply Lemma 3.3 with x1 = 0, x2 = M−4, y1 = 0, y2 = zt2/3,
y3 = zt2/3 + M−4 to obtain that, almost surely, for all z ∈ [0, K],

K2([(0, 0), (M−4, 0)]; [(zt2/3, t), (zt2/3 + M−4, t)])
Z ((0, 0); (zt2/3, t)

) ≤ K2([(0, 0), (M−4, 0)]; [(0, t), (zt2/3 + M−4, t)])
Z ((0, 0); (0, t)) ,

so that, indeed, we may work with a quantity in which the x-coordinate of the first endpoint in K2
is fixed to be zero (which is also the right endpoint of the interval that ĥt,1 will be conditioned on).
Thus we see that, on E , for all z ∈ [0, K],

ĥt,2(z) ≤ Ct−1/3 log M + t−1/3 log K2([(0, 0), (M−4, 0)]; [(0, t), (zt2/3 + M−4, t)])
Z ((0, 0); (0, t)) + t2/3

12 . (4.9)

For notational convenience, for all w ∈ R, let

K̃(t)
2 (w) := K2([(0, 0), (M−4, 0)]; [(0, t), (wt2/3 + M−4, t)]). (4.10)

Next note that since A is increasing, f ∈ A and g ≥ f implies g ∈ A. With this and (4.9), we obtain

P
(
ĥt,2(·)|[0,K] − Ct−1/3 log M ∈ A

∣∣∣ ĥt,1|[−R,0] ≥ f
)

≤ P

t−1/3 log
K̃(t)

2 (·)|[0,K]
Z ((0, 0); (0, t)) + 1

12 t2/3 ∈ A
∣∣∣∣ ĥt,1|[−R,0] ≥ f

+ P
(
Ec
∣∣∣ ĥt,1|[−R,0] ≥ f

)
. (4.11)
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We wish to now invoke Theorem 1.5 to bound the first term in (4.11). We set x1 = 0, x2 = M−4,
y1 = 0, and s = 0. Then Theorem 1.5 (recalling (4.10) and that ĥt,1(0) is an increasing linear
function of Z((0, 0); (0, t))) implies

P

t−1/3 log
K̃(t)

2 (·)|[0,K]
Z ((0, 0); (0, t)) + 1

12 t2/3 ∈ A
∣∣∣ ĥt,1|[−R,0] ≥ f


≤ P

(
z 7→ t−1/3 log Z(M−4, 0; zt2/3 + M−4, t)|[0,K] + 1

12 t2/3 ∈ A
)

.

By translation invariance, the final probability equals

P
(
z 7→ t−1/3 log Z(0, 0; zt2/3, t)|[0,K] + 1

12 t2/3 ∈ A
)

= P
(
ĥt,1(·)|[0,K] ∈ A

)
by (1.6), which is our final upper bound on the first term of (4.11). By the trivial bound, the second
term of (4.11) is upper bounded by

P (Ec)
P
(
ĥt,1|[−R,0] ≥ f

) .

As already noted in (4.8), the numerator is upper bounded by 3(K + 1)t2/3 exp(−cM2). This
completes the proof. □

5. Generalizations

In this section we discuss how our method actually extends to other multi-point partition functions.
In Section 5.1, we give a generalization in the log-gamma model, Theorem 5.1, that follows easily
from the arguments presented in Section 2. In Sections 5.2 and 5.3 we indicate how Theorem 5.1
would lead to results for the CDPR and KPZ line ensemble, respectively, modulo some technical
ingredients which are currently not available in the literature. To keep the exposition brief, instead
of providing all the details, we simply indicate in words how to adapt the the proofs from the
previous sections.

5.1. More points in log-gamma. To begin with, for the log-gamma polymer model, the proof of
Theorem 2.1 also leads to the following inequality (here we follow the notation of Section 2.1).

Let θ > 0. For any integers m, n, w satisfying m, n > w ≥ 1, let Ωm,n,w be the following set of
integer tuples:

Ωm,n,w :=
{

(a1, . . . , ak; ℓ1, . . . , ℓk) ∈ N2k : k ∈ N, w < a1 < · · · < ak ≤ m,
n − w > ℓ1 > · · · > ℓk ≥ 0

}
.

Here, w will be the number of “padding” points that will form the leftmost starting point and
topmost ending points in our theorem statement, and the conditions above ensure that there is
sufficient space for these points.

Denote (1, 1)k = [(1, 1), . . . , (k, 1)] and (m, n)k = [(m, n), . . . , (m, n − k + 1)] for each k ∈ N. Also,
for more compact notation, for a vector a = (a1, . . . , ak), let (a, 1) = ((a1, 1), . . . , (ak, 1)), and for a
vector ℓ = (ℓ1, . . . , ℓk), let (m, ℓ) = ((m, ℓ1), . . . , (m, ℓk)). Finally, recall the definitions of J [m, n]
from (2.7) and of Zm,n

j (i) from (2.8) and (2.9).

Theorem 5.1. For any increasing Borel measurable set A ⊆ R|Ωm,n,w|, almost surely

P
({

T ([(1, 1)w, (a, 1)], [(m, n)w, (m, ℓ)])
Tw((1, 1), (m, n))

}
(a;ℓ)∈Ωm,n,w

∈ A
∣∣∣∣ {Zm,n

j (i) : (i, j) ∈ J [m, n], 1 ≤ j ≤ w
})

≤ P
({

T ([(a, 1)], [(m, ℓ)])
}

(a;ℓ)∈Ωm,n,w

∈ A
)

.
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Its proof is essentially verbatim that of Theorem 2.1. Indeed, first, Proposition 2.10 expresses
T ([(a1, 1), . . . , (ak, 1)], [(m, ℓ1), . . . , (m, ℓk)])

as a k-path partition function in the line ensemble, i.e., in terms of {Zm,n
j (i)}(i,j)∈J [m,n]. Then,

Corollary 2.11 can be generalized to express the ratio
T ([(1, 1)w, (a, 1)], [(m, n)w, (m, ℓ)])

Tw((1, 1), (m, n)) = T ([(1, 1)w, (a1, 1), . . . , (ak, 1)], [(m, n)w, (m, ℓ1), . . . , (m, ℓk)])
Tw((1, 1), (m, n)) ,

also in terms of {Zm,n
j (i)}(i,j)∈J [m,n]; more precisely, as a k-path partition function in the line

ensemble obtained by excluding the top w lines of Zm,n. The idea of the proof is exactly the same
as that of Corollary 2.11, namely the w paths from (1, 1)w,� to (m, n)w,� in the line ensemble are
frozen and fully occupy the top w lines, and the contribution of these paths to the numerator of the
previous display is exactly cancelled by the denominator.

Second, Lemma 2.15 would imply a variant of Corollary 2.16, where the law of {Zm,n
j+w(i +

w)}(i,j)∈J [m−w,n−w] conditional on {Zm,n
j (·)}w

i=1 is given by the (unconditioned) law of

{Zm−w,n−w
j (i)}(i,j)∈J [m−w,n−w]

with a certain reweighting factor. The reweighting is of a form similar to Γg (from (2.23)), and is
also negatively associated with any increasing event, by the proof of Lemma 2.17. Then the same
arguments in the proof of Theorem 2.1 lead to Theorem 5.1.

5.2. CDRP limit. If one passes Theorem 5.1 through the log-gamma to the CDRP scaling limit,
as in our proof of Theorem 1.5, one would get a generalization of Theorem 1.5. However, such a
scaling limit result for the multi-path partition function with general endpoints does not seem to
be present in the literature, which we will expand on a little more shortly. For this reason, the
following simply indicates the form of the result one would obtain for the CDRP from Theorem 5.1
if such a scaling limit was established.

Recall the notation set up in Section 3. Fix any real numbers x, y ∈ R, and w, n ∈ N. Let
A ⊆ ∏n

i=1 C(Λi([x, x + K]) × Λi([y, y + K]),R) for some K > 0 be an increasing Borel measurable
set, where by increasing we mean that if f = (f1, . . . , fn) ∈ A and g = (g1, . . . , gn) is continuous,
has the same domain as f , and satisfies gi(z) ≥ fi(z) for each i ∈ J1, nK and z in the domain, then
g ∈ A. Let 1 ∈ Rw be the vector whose entries are all 1. Then for any s < t, R > 0, almost surely

P
({

log
Mw+i((x1, ·), s; (y1, ·), t)|Λi([x,x+K])×Λi([y,y+K])

Mw((x1), s; (y1), t)

}n

i=1
∈ A

∣∣∣∣ {log Zj(x, s; ·, t)}w
j=1|[y−R,y],

{log Zj(·, s; y, t)}w
j=1|[x−R,x]

)

≤ P
({

log M+
i (·, s; ·, t)|Λi([x,x+K])×Λi([y,y+K])

}n

i=1
∈ A

)
,

(5.1)
where

M+
i (x, s; y, t) =

i∏
j=1

(xj − x)w(yj − y)wMi(x, s; y, t),

for any x = (x1, . . . , xi) ∈ Λi([x, x + K]) and y = (y1, . . . , yi) ∈ Λi([y, y + K]). Here, M+ is defined
by removing the entropy factors coming from the factors involving x and y in the Vandermonde in
the definition (3.1) of M.

Observe that the w = n = 1 case is essentially Theorem 1.5, except that (5.1) allows the event
A to also involve the processes values as the second starting point varies, and the conditioning is
additionally done over Z as the starting point varies (apart from the ending point varying already
present in Theorem 1.5). Indeed, these features are already present in the prelimiting Theorem 2.1
and so carry over to the limit in a straightforward way by the same types of arguments as in
Section 4.

32



As mentioned just above, for larger values of n or w, a formal proof of (5.1) requires an analog of
Lemma 4.2 that gives convergence of multi-path log-gamma partition functions to (appropriately
normalized versions of) Mm (up to the boundary of Λm) for each m, which does not appear to be
present in the literature. In fact, if the starting and ending points are all separate (i.e., one is in the
interior of Λm), one can invoke the determinantal formula for K (which from (3.1) equals M up to
a normalization) as in Lemma 4.2 to get convergence to K, and if the points are all adjacent, one
can use results or arguments as in [CN17] to get convergence to M. In (5.1), however, we consider
collections of point where some are adjacent and some are separate, and no such general statement
is currently available, though we certainly expect it to hold.

5.3. Higher-indexed curves of the KPZt line ensemble. Assuming (5.1), it is plausible that
one can also generalize Theorem 1.4, to bound the higher-indexed curves in the KPZt line ensemble
conditional on the top several curves.

Namely, take any w, n ∈ N, y ∈ R, K, R ≥ 0. Let A ⊆ C([y, y + K],R)n be an increasing Borel
measurable set, and for an interval I and f , g ∈ C(I,R)w, let f ≥ g mean fi(x) ≥ gi(x) for all
i ∈ J1, wK and x ∈ I. Take f ∈ C([y − R, y],R)w, and any t > 0 and M > 0. We expect to have

P

{ w+i∑
j=w+1

ĥt,j |[y,y+K] − Ct−1/3 log M
}n

i=1
∈ A

∣∣∣∣ {ĥt,j |[y−R,y]}w
j=1 = f


≤ P

{ i∑
j=1

ĥt,j |[y,y+K]
}n

i=1
∈ A

+ 3(K + 1)t2/3 exp(−cM2)
P({ĥt,j |[y−R,y]}w

j=1 ≥ f)
.

(5.2)

where C, c > 0 are constants that may depend on w, n. We also expect the same to hold when
the conditioning is replaced by {ĥt,j |[y−R,y]}w

j=1 ≥ f , in which case we may relax the continuity
assumption and allow f : [y − R, y] → (R ∪ {−∞})w to be upper semicontinuous.

Since the sum of the top m lines of the KPZ line ensemble at a given point is the same as
Mm evaluated when all m starting points coincide and all m ending points coincide, the main
input required to generalize Theorem 1.4 to (5.2) assuming (5.1) would be a quantitative regularity
estimate for Mm (in order to relate it with M+

m, which is in this context the analog of K2 in
the m = 2 case) as the starting and ending points vary, essentially a higher-indexed version of
Lemma 4.4. For the m = 2 case handled in the earlier sections, we were able to make do with the
identity Lemma 3.6 and regularity estimates for the KPZ equation, but such an identity does not
seem to generalize to higher indexed curves in a way that is useful for this purpose. We do not
pursue obtaining quantitative regularity estimates directly in this paper.

Appendix A. Miscellaneous proofs

In this appendix we prove Lemma 3.8, Proposition 3.9, Lemma 3.10, and Lemma 3.11. In
Section A.1 we state some facts about the KPZ line ensemble which will be needed in the proof of
Proposition 3.9, which will be given in Section A.3. Section A.2 proves Lemma 3.8. The proofs of
Lemmas 3.10 and 3.11 will be given in Section A.4.

A.1. Line ensembles and Gibbs properties. W start the following Gibbs properties of ht,1 given
ht,2. For any a < b, denote by Fext([a, b]) the σ-algebra generated by ht,1 on R \ (a, b), and ht,2.

Lemma A.1. Take any a < b and t > 0. Conditional on Fext([a, b]), for (1) law of hβ
t,1 in [a, b],

(2) the rate 2 Brownian bridge connecting hβ
t,1(a) and hβ

t,1(b), the former is absolutely continuous
with respect to the latter, with Radon-Nikodym derivative (for a path B) proportional to W (B, hβ

t,2),
where

W (f, g) = exp
(

− 2
∫ b

a
exp(f(x) − g(x))dx

)
(A.1)
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This Gibbs property was first introduced and proven for the KPZ line ensemble in [CH16]. The
connection between the KPZt line ensemble and CDRP was formally established in [Nic21]. The
form of the Gibbs property presented here is from [GH22, Proposition 2.6, Theorem 2.8].

A useful consequence of the Gibbs property is the monotonicity in boundary data recorded below.
Lemma A.2 (Monotonicity in boundary data). Fix a < b, real numbers w∗, z∗ ∈ R and measurable
functions g∗ : [a, b] → R ∪ {−∞} for ∗ ∈ {↑, ↓} such that w↓ ≤ w↑, z↓ ≤ z↑, and, for all s ∈ (a, b),
g↓(s) ≤ g↑(s).

For ∗ ∈ {↑, ↓}, let Q∗ be a process on [a, b] such that Q∗(a) = w∗ and Q∗(b) = z∗, with Radon-
Nikodym derivative with respect to Brownian bridge given by W (Q∗, g) for β = 1. Then there exists
a coupling of the laws of Q↑ and Q↓ such that almost surely Q↓(s) ≤ Q↑

j (s) for all s ∈ (a, b).
The positive temperature (β = 1) statements are Lemmas 2.6 and 2.7 of [CH16]. See also [Dim22]

for a more detailed proof.
The following is a useful correlation inequality saying the line ensemble is positively associated.

Lemma A.3 (FKG inequality, [GH22, Theorem 2.7]). For any t > 0 and a < b, and any pair of
increasing events A and B in the space of all real continuous functions on [a, b],

P
(
ht,1|[a,b] ∈ A, ht,1|[a,b] ∈ B

)
≥ P

(
ht,1|[a,b] ∈ A

)
· P
(
ht,1|[a,b] ∈ B

)
.

Finally, we need the following estimate on the one-point lower tail of ĥt,1.

Proposition A.4. There exist c, L0 > 0 such that, for any 0 < t ≤ 1 and L > t−1/6L0,

P
(
ĥt,1(0) < −L

)
≤ exp(−cL2t1/6).

If we instead assume t > t0 for some t0 > 0, and L > L0, then

P
(
ĥt,1(0) < −L

)
< exp(−cL5/2),

with the constant c depending on t0.
These two estimates can be deduced from [DG23, Theorem 1.7] and [CG20, Theorem 1] respectively.

A.2. Proof of monotonicity in conditioning. Here we prove Lemma 3.8.
Proof of Lemma 3.8. [GH22, Theorem 2.7] states that the law of ht conditional on ht,1(xj) =
y�

j stochastically dominates the same conditional on ht,1(xj) = y�
j for any x1, . . . , xm ∈ R and

y∗
1, . . . , y∗

m ∈ R for ∗ ∈ {�, �} such that y�
j ≥ y�

j for all j ∈ J1, mK. Thus the case where D is a finite
set is already established.

Now consider the case where D is an interval. Let {Dm} be an increasing sequence of finite
subsets of D such that ∪∞

m=1Dm is a dense subset of D. Then for any k ∈ N and any event
A ⊆ C(J1, kK × D,R) of the first k curves of ht on D, it holds that

P
(
ht|J1,kK×D ∈ A

∣∣∣ ht,1|Dm

)
(A.2)

is a martingale in m. By Doob’s martingale convergence theorem and the continuity of ht,1, this
sequence has an almost sure limit, which equals

P
(
ht|J1,kK×D ∈ A

∣∣∣ ht,1|D
)

. (A.3)

Let us rephrase this in terms of the probability kernels underlying the conditional probabilities. For
each m ∈ N, let µm : B × Rm → [0, 1] be the probability kernel associated to the regular conditional
probability in (A.2), and µ : B × C(D,R) → [0, 1] be the one associated to (A.3), where B is the
Borel σ-algebra of C(J1, kK × D,R). So, what we have obtained by the martingale argument is that,
for each fixed A ∈ B, almost surely,

µm(A, ht,1|Dm) → µ(A, ht,1|D).
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Since ht,1 has full support in C(D,R) (by the absolute continuity to Brownian motion implied by the
Brownian Gibbs property enjoyed by ht; see Lemma A.1 and [CH16]), it follows that there exists
ΩA ⊆ C(D,R) which has probability 1 under the Brownian measure in the statement of the lemma
such that, for all f ∈ ΩA, µm(A, f |Dm) → µ(A, f |D).

Now let A be an increasing event and let f, g ∈ ΩA be such that f(x) ≥ g(x) for all x ∈ D.
Then by the finite case already established, µm(A, f |Dm) ≥ µm(A, g|Dm). Taking m → ∞ yields
µ(A, f) ≥ µ(A, g).

It remains to extend to all increasing events. This is accomplished by an approximation argument
(see [Bar05, Lemma 6]) from a countable generating set, using the continuity of ht,1 and that C(D,R)
is a Polish space. That is, we guarantee µ(A, f) ≥ µ(A, g) holds for a suitable countable collection of
increasing A for all f, g ∈ Ω for a probability one Ω ⊆ C(D,R), and this implies the same inequality
for all increasing A. □

A.3. Proof of the lower bound on the upper tail. Here we prove Proposition 3.9.

Proof of Proposition 3.9. For an M to be chosen, consider the favourable event

Favt =
{
ĥt,1(−L1/2) ≥ −L − M

}
∩
{
ĥt,1(L1/2) ≥ −L − M

}
.

By stationarity and positive association (Lemma A.3) of ĥt,1(x) + x2,

P(Favt) ≥ P(ĥt,1(0) > −M)2.

By Proposition A.4, if M > (t−1/6 ∨ 1)L0, then P(ĥt,1(0) > −M) ≥ 1 − exp(−cM). So by setting
M = C(t−1/6 ∨ 1) for a sufficiently large constant C guarantees that P(Favt) ≥ 1/2 for all t > 0.

Consider the σ-algebra F = Fext(1, [−L1/2, L1/2]). The Brownian Gibbs property says that the
distribution of ĥt,1 on [−L1/2, L1/2], conditionally on F , is that of a rate two Brownian bridge
tilted by the Radon-Nikodym derivative WHt/ZHt associated to the conditioned boundary data. By
monotonicity (Lemma A.2), on Favt, this Brownian bridge stochastically dominates the rate two
Brownian bridge B from (−L1/2, −L − M) to (L1/2, −L − M) with no lower boundary condition.

Thus it follows that
P
(
ĥt,1(0) ≥ L

) ≥ E
[
P
(
ĥt,1(0) ≥ L | F) · 1Fav

]
≥ 1

2 · P (B(0) ≥ L) .

Now B(0) is a normal random variable with mean −L − M and variance L1/2. Thus by a standard
lower bound on the normal probability (see, e.g., [GH22, Lemma 2.10]), it holds on Favt that

P
(
ĥt,1(0) ≥ L

) ≥ cL−3/4 · exp
(

−(L + L + M)2

2L1/2

)
≥ exp(−5L3/2),

the last inequality for L > M . This completes the proof. □

A.4. Proofs of regularity statements. Here we give the proofs of Lemmas 3.10 and 3.11. For
the proof of Lemma 3.11, we will need a basic two-point estimate. It will be proved along with
Lemma 3.10 as both follow immediately from the results of [Wu24].

Lemma A.5. There exist C, c > 0 such that, for all j ∈ N, x, y ∈ R, and K > 0,

P
(
|ĥt,j(x) − ĥt,j(y) + x2 − y2| ≥ K|x − y|1/2

)
≤ C exp(−cK2).

Proofs of Lemmas A.5 and 3.10. We start with Lemma A.5. [Wu24, eq. (2.6)] asserts that there
exist c, C > 0 such that, for any j ∈ N, any line ensemble L in a certain class denoted LC (for
log-concave), and any x, y ∈ R,

P
(
|Lj(x) − Lj(y) − (E[Lj(x)] − E[Lj(y)])| ≥ K|x − y|1/2

)
≤ C exp(−cK2). (A.4)
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The class LC is closed under weak limits as well as constant shifts, and [Wu24, Proposition 3.4]
states that the O’Connell-Yor diffusion is a member of LC. It thus follows from the convergence
of O’Connell-Yor (appropriately centered) to the KPZ line ensemble (see [Nic21, Theorem 1.2] or
[CH16, Proposition 3.7] for the result in the case of j = 1 in closer notation to ours) that the KPZ
line ensemble ht is also a member of LC. Since the scaling (1.7) to go from ht to ĥt preserves the
Wiener measure, ĥt also lies in LC and thus (A.4) applies with L = ĥt. Recalling that ĥt,j(x) + x2

is stationary [ACQ11, Proposition 1.4] yields the claim.
The proof of Lemma 3.10 is identical after replacing the invocation of [Wu24, eq. (2.6)] with

[Wu24, Theorem 2.8(ii)]. □

Proof of Lemma 3.11. First we prove the two-point tail estimate that there exists c, C > 0 such
that for any x1, x2, y1, y2 ∈ R and M > 0,

P
(
|h(x1, 0; y1, t) − h(x2, 0; y2, t)| ≥ M∥(x1, y1) − (x2, y2)∥1/2

)
≤ C exp(−cM2). (A.5)

From (A.5) we obtain the statement of Lemma 3.11 by a standard chaining argument (e.g., [DV21,
Lemma 3.3]). To prove (A.5), we rewrite the inequality from Lemma A.5 as

P
(
|h(x, 0; y1, 1) − h(x, 0; y2, 1)| ≥ M |y1 − y2|1/2

)
≤ C exp(−cM2). (A.6)

Then, by (i) the triangle inequality, (ii) since |a| + |b| ≤ 2p−1(a4 + b4)1/4 for any a, b ∈ R, and (iii)
since x 7→ h(x, 0; y, 1) is equal in distribution to x 7→ h(y, 0; x, 1),

|h(x1, 0; y1, 1) − h(x2, 0; y2, 1)| ≤ |h(x1, 0; y1, 1) − h(x1, 0; y2, 1)| + |h(x1, 0; y2, 1) − h(x2, 0; y2, 1)|
d= |h(x1, 0; y1, 1) − h(x1, 0; y2, 1)| + |h(y2, 0; x1, 1) − h(y2, 0; x2, 1)|
≤ M

(
|y1 − y2|1/2 + |x1 − x2|1/2

)
≤ C̃K∥(x1, y1) − (x2, y2)∥1/2,

where the penultimate inequality holds on an event of probability at least 1 − C exp(−cM2) by
applying (A.6). This proves (A.5) and completes the proof of Lemma 3.11. □
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